78 research outputs found
CHOP 5'UTR-c.279T>C and +nt30C>T variants are not associated with overweight condition or with tumors/cancer in Italians â a case-control study
<p>Abstract</p> <p>Background</p> <p>Type 2 diabetes (T2D) is associated with obesity and has been shown recently to be associated with tumors/cancer. <it>HNF1-beta </it>and <it>JAZF1 </it>genes are associated with T2D and prostate cancer. We have previously shown that <it>CHOP </it>5'UTR-c.279T>C and +nt30C>T haplotype variants contribute to T2D. CHOP deficiency causes obesity in mice, thus <it>CHOP </it>gene variants may contribute to human obesity. Furthermore, <it>CHOP </it>mediates apoptosis and is implicated in cancer pathogenesis. Hence, we aimed at identifying any potential association of <it>CHOP </it>5'UTR-c.279T>C and +nt30C>T genotypes and corresponding haplotypes with overweight condition/pre-obesity and tumors/cancer in an Italian dataset.</p> <p>Methods</p> <p>We recruited from Italy 45 overweight subjects (body mass index (BMI) â„ 25) and 44 control subjects (BMI < 25) as well as 54 cases with at least one cancer or at least one tumor and 43 control subjects without tumors/cancer from the general population. We excluded allelic departure from Hardy-Weinberg equilibrium in cases and control subjects, separately.</p> <p>Results</p> <p>We assessed the power to detect risk odds ratios by association tests in our datasets. We tested the hypothesis of association of CHOP 5'UTR-c.279T>C and +nt30C>T genotypes and haplotypes with tumors/cancer and, separately, with overweight condition. Both associations were not significant.</p> <p>Conclusion</p> <p>From our study, we may conclude that <it>CHOP </it>5'UTR-c.279T>C and +nt30C>T genotypes and corresponding haplotypes are not associated with tumors/cancer and pre-obesity. However, more studies are warranted to establish the role of <it>CHOP </it>variants in tumor/cancer predisposition and in overweight condition.</p
Measuring the escape velocity and mass profiles of galaxy clusters beyond their virial radius
The caustic technique uses galaxy redshifts alone to measure the escape
velocity and mass profiles of galaxy clusters to clustrocentric distances well
beyond the virial radius, where dynamical equilibrium does not necessarily
hold. We provide a detailed description of this technique and analyse its
possible systematic errors. We apply the caustic technique to clusters with
mass M_200>=10^{14}h^{-1} M_sun extracted from a cosmological hydrodynamic
simulation of a LambdaCDM universe. With a few tens of redshifts per squared
comoving megaparsec within the cluster, the caustic technique, on average,
recovers the profile of the escape velocity from the cluster with better than
10 percent accuracy up to r~4 r_200. The caustic technique also recovers the
mass profile with better than 10 percent accuracy in the range (0.6-4) r_200,
but it overestimates the mass up to 70 percent at smaller radii. This
overestimate is a consequence of neglecting the radial dependence of the
filling function F_beta(r). The 1-sigma uncertainty on individual escape
velocity profiles increases from ~20 to ~50 percent when the radius increases
from r~0.1 r_200 to ~4 r_200. Individual mass profiles have 1-sigma uncertainty
between 40 and 80 percent within the radial range (0.6-4) r_200. We show that
the amplitude of these uncertainties is completely due to the assumption of
spherical symmetry, which is difficult to drop. Alternatively, we can apply the
technique to synthetic clusters obtained by stacking individual clusters: in
this case, the 1-sigma uncertainty on the escape velocity profile is smaller
than 20 percent out to 4 r_200. The caustic technique thus provides reliable
average profiles which extend to regions difficult or impossible to probe with
other techniques.Comment: MNRAS accepted, 20 page
Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy
The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2) pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms) that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin) on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity
CMB-HD: an Ultra-Deep, High-Resolution Millimeter-Wave Survey over Half the Sky
A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 gigahertz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 microK-arcminutes noise and 15 arcseconds resolution at 150 gigahertz), CMB-HD (Cosmic Microwave Background - Henry Draper catalog entry) will enable major advances. It will allow 1) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k approximately equal to 10 h per megaparsec), which probes dark matter particle properties. It will also allow 2) measurements of the thermal and kinetic Sunyaev-Zeldovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field, which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3) ruling out or detecting any new, light (less than 0.1 electronvolts), thermal particles, which could potentially be the dark matter, and 4) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5) monitor the transient sky by mapping the full observing region every few days, which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6) provide a census of planets, dwarf planets, and asteroids in the outer Solar System, and 7) enable the detection of exo-Oort clouds around other solar systems, shedding light on planet formation. The combination of CMB-HD with contemporary ground and space-based experiments will also provide powerful synergies. CMB-HD will deliver this survey in 5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopes will field about 2.4 million detectors (600,000 pixels) in total. The CMB-HD survey will be made publicly available, with usability and accessibility a priority
Heterogeneity of fractional anisotropy and mean diffusivity measurements by in vivo diffusion tensor imaging in normal human hearts
Background: Cardiac diffusion tensor imaging (cDTI) by cardiovascular magnetic resonance has the potential to assess microstructural changes through measures of fractional anisotropy (FA) and mean diffusivity (MD). However, normal variation in regional and transmural FA and MD is not well described.
Methods: Twenty normal subjects were scanned using an optimised cDTI sequence at 3T in systole. FA and MD were quantified in 3 transmural layers and 4 regional myocardial walls.
Results: FA was higher in the mesocardium (0.46 ±0.04) than the endocardium (0.40 ±0.04, pâ€0.001) and epicardium (0.39 ±0.04, pâ€0.001). On regional analysis, the FA in the septum was greater than the lateral wall (0.44 ±0.03 vs 0.40 ±0.05 p = 0.04). There was a transmural gradient in MD increasing towards the endocardium (epicardium 0.87 ±0.07 vs endocardium 0.91 ±0.08Ă10-3 mm2/s, p = 0.04). With the lateral wall (0.87 ± 0.08Ă10-3 mm2/s) as the reference, the MD was higher in the anterior wall (0.92 ±0.08Ă10-3 mm2/s, p = 0.016) and septum (0.92 ±0.07Ă10-3 mm2/s, p = 0.028). Transmurally the signal to noise ratio (SNR) was greatest in the mesocardium (14.5 ±2.5 vs endocardium 13.1 ±2.2, p<0.001; vs epicardium 12.0 ± 2.4, p<0.001) and regionally in the septum (16.0 ±3.4 vs lateral wall 11.5 ± 1.5, p<0.001). Transmural analysis suggested a relative reduction in the rate of change in helical angle (HA) within the mesocardium.
Conclusions: In vivo FA and MD measurements in normal human heart are heterogeneous, varying significantly transmurally and regionally. Contributors to this heterogeneity are many, complex and interactive, but include SNR, variations in cardiac microstructure, partial volume effects and strain. These data indicate that the potential clinical use of FA and MD would require measurement standardisation by myocardial region and layer, unless pathological changes substantially exceed the normal variation identified
The Simons Observatory Large Aperture Telescope Receiver
The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be
coupled to the Large Aperture Telescope located at an elevation of 5,200 m on
Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution
millimeter-wave maps of half the sky with unprecedented precision. The LATR is
the largest cryogenic millimeter-wave camera built to date with a diameter of
2.4 m and a length of 2.6 m. It cools 1200 kg of material to 4 K and 200 kg to
100 mk, the operating temperature of the bolometric detectors with bands
centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will
accommodate 13 40 cm diameter optics tubes, each with three detector wafers and
a total of 62,000 detectors. The LATR design must simultaneously maintain the
optical alignment of the system, control stray light, provide cryogenic
isolation, limit thermal gradients, and minimize the time to cool the system
from room temperature to 100 mK. The interplay between these competing factors
poses unique challenges. We discuss the trade studies involved with the design,
the final optimization, the construction, and ultimate performance of the
system
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
CMB-S4
We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
Abstract: CMB-S4âthe next-generation ground-based cosmic microwave background (CMB) experimentâis set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2â3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5Ï, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL
- âŠ