68 research outputs found

    Measurement and Analysis of Terminal Shock Oscillation and Buffet Forcing Functions on a Launch Vehicle Payload Fairing

    Get PDF
    The buffet loads on a launch vehicle payload shroud can be impacted by the unsteadiness associated with a terminal shock at high subsonic speeds. At these conditions, flow accelerates to supersonic speeds on the nose of the payload fairing and is terminated by a normal shock on the cylindrical section downstream of the nose cone/cylinder shoulder. The location of the terminal shock and associated separated boundary layer is affected by the freestream Mach number, Reynolds number, and the pitch/yaw of the launch vehicle. Furthermore, even when the freestream conditions and vehicle attitude are constant, this terminal shock oscillates on the surface of the vehicle. The time-varying surface pressure associated with the terminal shock results in unsteady aerodynamic loads that may interact with vehicle structural dynamic modes and the guidance and control of the vehicle. Buffet testing of a 3-percent scale rigid buffet model of a launch vehicle cargo configuration with a tangent-ogive payload shroud was conducted in 2012 and in 2016. Initial buffet forcing functions (BFFs) utilized a coarse pressure sensor distribution on the vehicle surface in which a single longitudinal station with eight sensors observed the terminal shock environment at Mach 0.90. An examination of these circumferential pressures reveal large impulse-like pressure fluctuations and an asymmetry in pressure when the vehicle is at a nonzeroangle of attack that result in high BFFs. Revisions to the shock integration region were made based on computational fluid dynamics and shadowgraph video of shock motion to better represent the BFFs and reduce the high loads resulting from this environment. To more clearly understand this terminal shock environment, a second wind tunnel test was conducted with a dense distribution of 256 sensors at the terminal shock location. These sensor arrays presents a unique opportunity to observe the unsteady terminal shock environment and to characterize the impact of various integration schemes on the BFFs. This paper presents a summary of the development of BFFs for this terminal shock and a detailed analyses of shock region pressure coefficients, coherence, BFFs, shock location time histories, and power spectral density to help guide development of BFFs for other launch vehicle test and analysis programs

    WRATS Integrated Data Acquisition System

    Get PDF
    The Wing and Rotor Aeroelastic Test System (WRATS) data acquisition system (DAS) is a 64-channel data acquisition display and analysis system specifically designed for use with the WRATS 1/5-scale V-22 tiltrotor model of the Bell Osprey. It is the primary data acquisition system for experimental aeroelastic testing of the WRATS model for the purpose of characterizing the aeromechanical and aeroelastic stability of prototype tiltrotor configurations. The WRATS DAS was also used during aeroelastic testing of Bell Helicopter Textron s Quad-Tiltrotor (QTR) design concept, a test which received international attention. The LabVIEW-based design is portable and capable of powering and conditioning over 64 channels of dynamic data at sampling rates up to 1,000 Hz. The system includes a 60-second circular data archive, an integrated model swashplate excitation system, a moving block damping application for calculation of whirl flutter mode subcritical damping, a loads and safety monitor, a pilot-control console display, data analysis capabilities, and instrumentation calibration functions. Three networked computers running custom-designed LabVIEW software acquire data through National Instruments data acquisition hardware. The aeroelastic model (see figure) was tested with the DAS at two facilities at NASA Langley, the Transonic Dynamics Tunnel (TDT) and the Rotorcraft Hover Test Facility (RHTF). Because of the need for seamless transition between testing at these facilities, DAS is portable. The software is capable of harmonic analysis of periodic time history data, Fast Fourier Transform calculations, power spectral density calculations, and on-line calibration of test instrumentation. DAS has a circular buffer archive to ensure critical data is not lost in event of model failure/incident, as well as a sample-and-hold capability for phase-correct time history data

    Experimental Data from the Benchmark SuperCritical Wing Wind Tunnel Test on an Oscillating Turntable

    Get PDF
    The Benchmark SuperCritical Wing (BSCW) wind tunnel model served as a semi-blind testcase for the 2012 AIAA Aeroelastic Prediction Workshop (AePW). The BSCW was chosen as a testcase due to its geometric simplicity and flow physics complexity. The data sets examined include unforced system information and forced pitching oscillations. The aerodynamic challenges presented by this AePW testcase include a strong shock that was observed to be unsteady for even the unforced system cases, shock-induced separation and trailing edge separation. The current paper quantifies these characteristics at the AePW test condition and at a suggested benchmarking test condition. General characteristics of the model's behavior are examined for the entire available data set

    Ares Launch Vehicle Transonic Buffet Testing and Analysis Techniques

    Get PDF
    It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. In order to obtain these forcing functions, the accepted method is to perform wind-tunnel testing of a rigid model instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. The buffet wind-tunnel test program for the Ares Crew Launch Vehicle employed 3.5 percent scale rigid models of the Ares I and Ares I-X launch vehicles instrumented with 256 unsteady pressure transducers each. These models were tested at transonic conditions at the Transonic Dynamics Tunnel at NASA Langley Research Center. The ultimate deliverable of the Ares buffet test program are buffet forcing functions (BFFs) derived from integrating the measured fluctuating pressures on the rigid wind-tunnel models. These BFFs are then used as input to a multi-mode structural analysis to determine the vehicle response to buffet and the resulting buffet loads and accelerations. This paper discusses the development of the Ares I and I-X rigid buffet model test programs from the standpoint of model design, instrumentation system design, test implementation, data analysis techniques to yield final products, and presents normalized sectional buffet forcing function root-mean-squared levels

    Analysis of a Transonic Alternating Flow Phenomenon Observed During Ares Crew Launch Vehicle Wind Tunnel Tests

    Get PDF
    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition from separated to attached flow about the cone-cylinder junction with increasing Mach number. For locally transonic conditions at this junction, the flow randomly fluctuates back and forth between a subsonic separated flow and a supersonic attached flow. These fluctuations produce a square-wave like pattern in the pressure time histories which, upon integration result in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a wind-tunnel-test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet loa

    Assessment of Buffet Forcing Function Development Process Using Unsteady Pressure Sensitive Paint

    Get PDF
    A wind tunnel test was conducted at the Ames Unitary Plan Wind Tunnel to characterize the transonic buffet environment of a generic launch vehicle forebody. The test examined a highly instrumented version of the Coe and Nute Model 11 test article first tested in the 1960s. One of the measurement techniques used during this test was unsteady pressure sensitive paint (uPSP) developed at the Arnold Engineering Development Complex. This optical measurement technique measured fluctuating pressures at over 300,000 locations on the surface of the model. The high spatial density of these measurements provided an opportunity to examine in depth the assumptions underpinning the development of buffet forcing functions (BFFs) used in the development of the Space Launch System vehicle. The comparison of discrete-measurement-based BFFs to BFFs developed by continuous surface pressure integration indicates that the current BFF development approach under predicts low frequency content of the BFFs while over predicting high frequency content. Coherence-based adjustments employed to reduce over prediction in the surface integration of discrete pressure measurements contribute to the inaccuracy of the BFFs and their implementation should be reevaluated

    Analysis of Ares Crew Launch Vehicle Transonic Alternating Flow Phenomenon

    Get PDF
    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition between a subsonic separated and a supersonic attached flow about the cone-cylinder junction as the local flow randomly fluctuates back and forth between the two flow states. These fluctuations produce a square-wave like pattern in the pressure time histories resulting in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a windtunnel- test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load. I. Introduction On

    Effect of Surface Pressure Integration Methodology on Launch Vehicle Buffet Forcing Functions

    Get PDF
    The 2014 test of the Space Launch System (SLS) Rigid Buffet Model conducted at the NASA Langley Transonic Dynamics Tunnel employed an extremely high number of unsteady pressure transducers. The high channel count provided an opportunity to examine the effect of transducer placement on the resulting buffet forcing functions (BFFs). Rings of transducers on the forward half of the model were employed to simulate a single-body vehicle. The impact of transducer density, circumferential distribution, and loss of a single transducer on the resulting BFFs were examined. Rings of transducers on the aft half of the SLS model were employed to examine the effect of transducer density and circumferential distribution on BFFs for a multi-body configuration. Transducer placement considerations with respect to model size, facility infrastructure, and data acquisition system capabilities, which affect the integration process, are also discussed

    Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings

    Get PDF
    Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach

    Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft

    Get PDF
    The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches
    • …
    corecore