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A wind tunnel test was conducted at the Ames Unitary Plan Wind Tunnel to characterize 
the transonic buffet environment of a generic launch vehicle forebody.  The test examined a 
highly instrumented version of the Coe and Nute Model 11 test article first tested in the 1960s.  
One of the measurement techniques used during this test was unsteady pressure sensitive paint 
(uPSP) developed at the Arnold Engineering Development Complex.  This optical 
measurement technique measured fluctuating pressures at over 300,000 locations on the 
surface of the model.  The high spatial density of these measurements provided an opportunity 
to examine in depth the assumptions underpinning the development of buffet forcing functions 
(BFFs) used in the development of the Space Launch System vehicle.  The comparison of 
discrete-measurement-based BFFs to BFFs developed by continuous surface pressure 
integration indicates that the current BFF development approach underpredicts low-
frequency content of the BFFs while overpredicting high frequency content.  Coherence-based 
adjustments employed to reduce overprediction in the surface integration of discrete pressure 
measurements contribute to the inaccuracy of the BFFs and their implementation should be 
reevaluated. 

I.  Introduction 

Transonic buffet is one of the most severe aerodynamic phenomena that a rocket experiences during launch.  As a 
launch vehicle approaches the transonic regime, Mach 0.8 to 1.2, large amplitude pressure fluctuations are produced 
by phenomena such as flow separation and shock dynamics.  The unsteady aerodynamic forces produced by these 
phenomena can excite both global and local vehicle structural response.  The consequences of incorporating poorly 
characterized buffet forces into the design process can range from inefficient structures that can reduce the vehicle 
capabilities to undersized structures that, in the worst case scenario, may result in structural failure (Refs. 1, 2, 3).  It 
is thus imperative to appropriately characterize the transonic buffet environment.   

Modeling buffet-related aerodynamic forces is accomplished by developing buffet forcing functions (BFFs) – a series 
of orthogonal force time histories acting at various longitudinal stations on the vehicle centerline, each representing 
the net forces caused by surface pressures acting on a longitudinal segment of the vehicle.  Buffet forcing functions 
are traditionally developed using experimentally-measured pressure time histories that are acquired using a rigid wind 
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tunnel model of a launch vehicle tested at transonic conditions.  Analytical forcing functions based on time-accurate 
Computational Fluid Dynamics (CFD) methods are currently not practical due to prohibitively computationally-
expensive solutions (Ref. 4), but have been used to provide additional insight into the buffet environment for specific 
problems (Ref. 4, 5).  On the other hand, steady-state CFD solutions are used extensively to help determine sensor 
placement on rigid buffet models since proper sensor placement is critical in BFF development.  In addition to these 
CFD solutions, the distribution of sensors on the surface of these models is based on a combination of other factors 
including the model outer mold line (OML), data acquisition system/facility limitations, model volume, engineering 
judgement, and budget.  Satisfying all these conflicting needs and restrictions results in a sparsely-instrumented model 
of a launch vehicle.   

The most-instrumented transonic buffet model tested by NASA incorporated only 472 unsteady pressure sensors in 
its design (Ref. 6).  Measurements from some of these sensors were used to approximate the fluctuating surface 
pressures acting on a patch of the full-scale vehicle with a wetted surface area as large as 270 square feet (Ref. 7).  
Accurate extrapolation of pressure variation between such widely-spaced sensors is not possible and the current 
approach of applying the measured pressure time history to the entire surface area causes a significant overprediction 
of the resulting fluctuating force.  The SLS project team adjusts these forces using coherence-based factors that reduce 
the effective surface area used in the pressure integration, thereby approximating the effects of temporal and spatial 
variation in surface pressure (Ref. 7).    

In 2015, a wind tunnel test – called the Buffet Verification Test (BVT) – was conducted at the Ames Unitary Plan 
Wind Tunnel, 11-foot test section (Ref. 8).  The test used a highly instrumented copy of a previously-tested notional 
launch vehicle forebody as a platform to develop new measurement techniques and improve the understanding of the 
transonic buffet environment.  This model, based on the Model 11 tested by Coe and Nute (Ref. 9), is a simple 
axisymmetric launch vehicle geometry, where a large payload fairing is attached to a smaller-diameter second stage.  
This configuration is found on many modern launch vehicles and is conducive to producing a highly-unsteady buffet 
environment (Ref. 1).  The instrumentation suite employed in the BVT included static pressure taps, unsteady pressure 
transducers, accelerometers, four-component balance, shadowgraph and infrared imaging, and unsteady pressure 
sensitive paint (uPSP).  Unsteady PSP had previously been demonstrated (Ref. 10) in the large wind tunnel at AEDC 
and was requested to partner with NASA to provide uPSP data for this test.  The advent of uPSP has provided an 
opportunity to examine in depth the assumptions underpinning the development of BFFs, such as the coherence 
factors.  This work examines some of the assumptions and approximations currently used in the development of BFFs 
by comparing these estimates with those generated by direct integration of extremely dense uPSP measurements. 

II.  Buffet Forcing Function Development Methodology 

The current state-of-the-art BFF development method is based on discrete, unsteady pressure measurements acquired 
using pressure transducers embedded in the skin of a rigid wind tunnel model.  The general outline of this multistep 
process is presented in Figure 1.  A detailed discussion of the BFF development method can be found in References 
7 and 10.  The sparse distribution of sensors requires that discrete pressure measurements are integrated over large 
surface areas and then adjusted using coherence-based factors to account for spatially and temporally varying pressure 
unsteadiness across the integration surface.   

The BFF development process significantly relies on engineering judgement.  Among the choices made by engineers 
are:  location of sensors, integration boundaries, frequency range used for the coherence analysis, and selection of 
longitudinal aerodynamic regions (i.e., defining vehicle regions dominated by a single unsteady aerodynamic 
phenomenon).  Each of these decisions can have an impact on the final BFFs.  Using uPSP measurements circumvents 
the majority of these somewhat subjective decisions by acquiring continuous surface pressure measurements, thereby 
replacing all the steps within the red dash-line box in the BFF development diagram (Figure 1) with a simple surface 
integration without the aforementioned engineering assumptions. 

A. Unsteady Pressure Sensitive Paint Data  

Equipment and data processing methodologies from AEDC were used to produce the uPSP time history data and 
details of this process can be found in Ref. 11.  The uPSP data were mapped to a model surface grid, providing 
unsteady surface pressure data at almost 305,000 locations on the surface of the model, as shown in Figure 2.  The 
grid consists of rings of measurement locations at approximately 700 longitudinal stations down the length of the 
model.  Each ring is made up of between 260 to 1200 discrete measurement locations.  Due to the scale of the 
aerodynamic phenomena being measured and the spatial density of the measurement grid, the uPSP data approximates 
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a continuous surface pressure measurement.  Each uPSP data record consists of 10-second time histories of fluctuating 
pressures at each grid point acquired at a sample rate of 5000 Hz. 

 

Figure 1. Flow diagram of buffet forcing function development process.  (Blocks contained in red dashed box 
can be eliminated when continuous surface pressure measurements from uPSP are used.) 

 

Figure 2.  3-D representation of a sample uPSP grid. 
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B. Surface Integration  

The choice of integration areas for discrete pressure measurements is based on the combination of major OML 
changes, such as cone-cylinder junctions, and halfway points (both longitudinal and circumferential) between adjacent 
sensors.  The physical sensor locations on the BVT model and the associated integration areas for the sensors are 
presented in Figure 3.  The locations of the transducers are depicted by black points and the integration boundaries for 
the transducers are represented by red and green lines. 

 

Figure 3.  BVT model sensor locations and integration boundaries.  (The region examined in this study is 
represented by the green integration boundaries.) 

C. Pressure Sensor– uPSP Comparison 

Traditional pressure transducers (PTs) embedded in the model skin are simulated using uPSP measurements by 
identifying the closest location on the uPSP surface grid to each PT.  These grid locations, or virtual pressure 
transducers (vPTs), are then used to provide a direct comparison between BFFs developed using the current state-of-
the-art techniques that use discrete pressure measurements and coherence-based integration adjustments.   

A sample comparison of the BFF standard deviation (root-mean-square with mean removed, but for simplicity referred 
to as rms henceforth) is presented in Figure 4.  The blue circles represent PT-based BFF data while the red squares 
represent the vPT-based BFF data.  The BFF data are plotted as a function of longitudinal station and is separated into 
longitudinal (Fx), lateral (Fy), and vertical (Fz) components.  The aftmost ring of sensors in Figure 3 is not used in this 
comparison, since the uPSP data did not entirely cover this segment of the model.  In general, Figure 4 indicates that 
the level of unsteadiness in the PT- and vPT-based BFFs is similar and the overall trends for all three components of 
the BFFs match well. 

Although the BFF rms levels appear to indicate that the uPSP measurements match the physical sensor measurements 
well, examining the coherence data for the two data sets indicates otherwise.  The coherence lengths as a function of 
longitudinal station are presented in Figure 5a and the coherence angles as a function of longitudinal station are 
presented in Figure 5b.  The PT-derived coherence parameters are presented in blue and the vPT-derived coherence 
parameters are presented in red.  The data indicates that forward of the frustum (approx. station 15 inches) the trends 
and magnitude of the coherence do not match for the PT and vPT data, therefore, the frequency content of the uPSP 
measurements on the forebody may not be properly resolved.  This problem may be due to poor signal-to-noise ratio 
and small magnitude pressure fluctuations in that region (Ref. 8).  These differences in the coherence lengths and 
angles were noted for the entire range of Mach numbers and model attitudes examined.  As a consequence, only the 
uPSP data located within the boundaries highlighted in green in Figure 3, will be considered in this analysis.   
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Figure 4.  Sample comparison of BFF ΔFrms based on PT and vPT, M=0.92, α=0°. 

 

Figure 5.  Sample comparison of coherence lengths and angles based on PT and vPT, M=0.92, α=0°. 

III.  Continuous Integration vs. vPT-based BFFs 

In order to understand how the various assumptions in the BFF development process (outlined in Figure 1) impact the 
fidelity of the BFFs, forcing functions were generated using uPSP-derived discrete measurements (vPTs) and 
compared to forcing functions developed by integrating the continuous uPSP over the same longitudinal segments of 
the model.  vPT-based BFFs were developed using various vPT distributions selected to isolate the impact of a few 
key BFF-development assumptions and wind tunnel model design choices.  These variations included azimuthal 
density of sensors, longitudinal density of sensors, and longitudinal location of sensors within an integration area. 

As described in the previous section, the uPSP data used in this analysis are limited to the aft half of the BVT model, 
downstream of station 14.7 inches.  Likewise, the aftmost instrumented segment of the model, downstream of station 
34.6 inches, lacked complete uPSP surface coverage and is not included in this analysis.  The surface region of the 
model examined in this study is highlighted in green in Figure 3.  This study includes 28 wind tunnel data points at a 
range of Mach numbers, model angle of attack, and Reynolds numbers provided in Table 1.  Note that uPSP data were 
not available for all combinations of listed test conditions, hence only 28 out of 30 combinations are utilized.  

The BFFs are analyzed using several approaches including a comparison of standard deviation (rms), power spectral 
density functions (PSDs), and cross-PSDs.  Throughout this paper, the PSDs, cross-PSDs, and coherence functions 
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were computed with a 212 window size, 212 discrete Fourier transform points, 50% window length overlap, and a 
Hamming window was applied to reduce spectral leakage.   

The large number of BFFs in this data set – 560 BFFs (20 BFF components x 28 data points) – makes it impractical 
to examine all the data individually.  Therefore, along with some sample comparisons, extensive use of histograms 
and other statistical techniques is required to understand the overall trends in the data.   

Table 1. Test conditions. 

Mach 0.80, 0.85, 0.92, 1.025, 1.10 

Angle of attack (deg) -4, 0, 4 

Reynolds number (ft-1) 3e6, 5e6 

A. Effect of Azimuthal Sensor Density 

One of the choices required in the design of a wind tunnel model is the azimuthal sensor density, or the number of 
sensors located at a particular model station.  These sensors are usually distributed in an axisymmetric manner around 
the circumference of the model.   

1. Trends in Overall BFF Fluctuation 

Histograms are used to understand the trends in how the azimuthal density of sensors affects the overall fluctuation of 
BFFs.  The histograms were created by calculating the rms levels of vPT-based BFFs and comparing them to BFFs 
developed by performing a continuous surface integration of the uPSP data over the same segments of the model.  A 
percent error in rms values relative to the continuous integration BFFs was determined for BFFs developed using 4, 
8, 16, and 32 vPTs per ring of sensors.  A negative error implies that the BFFs from discrete (virtual) pressure 
measurements are underpredicting the overall fluctuations.  These histograms only include the BFFs for the integration 
segments on the frustum and aft of the frustum.   

Histograms of the rms error for BFFs developed using 4, 8, 16, and 32 vPTs are provided in Figures 6 through 9, 
respectively.  The data used to develop the histograms were parsed in two ways in order to provide some further 
insight about the accuracy of the BFF development methodology.  First, the BFF data were divided into two cases: 0 
degree angle of attack and 4 degree angle of attack (provided in subfigures a and b in Figures 6 through 9; the combined 
dataset is presented in subfigure c).  The data were also separated into the three orthogonal components of the BFFs: 
longitudinal, lateral, and vertical.  

The first notable characteristic of all the histograms in Figures 6 through 9 is the non-Gaussian, two-peak distribution.  
The underlying cause of this distribution is that the BFFs used in this study are dominated by two distinct aerodynamic 
phenomena – the separated flow aft of the frustum and the reattached flow further downstream on the model.  
Separating the BFFs by regions dominated by each aerodynamic phenomenon results in a Gaussian histogram 
distribution for each subset of data (not presented). The histograms produced by these two subsets of BFFs are 
separated by an offset in the percent error:  the separated flow (SF) region exhibits a larger percent error (more to the 
left on the abscissa) in underpredicting the overall fluctuations than the reattached flow (RF) region (more to the right 
on the abscissa).  To highlight this difference in the BFFs for the two aerodynamic regions in Figures 6 through 9, the 
components of the histograms that represent the RF region data are outlined with a thicker border.  These differing 
offsets indicate that the current approach used to generate BFFs varies in its ability to model the overall fluctuations 
of the buffet loads due to different aerodynamic phenomena.   

The second observation about the histograms is that comparing the zero and four degree angle-of-attack cases, the 
change in histogram distribution is minimal, indicating that the level accuracy of the BFF development approach is 
not affected by changes in angle of attack.  Furthermore, the axisymmetric nature of the model implies that there 
should be no difference in the histograms of the vertical and lateral BFF components at zero degree angle of attack, 
Figures 6a through 9a.  This observation also holds true for the four degree angle of attack, see Figures 6b through 9b.  
An explanation for this angle-of-attack insensitivity is yet to be determined.  

The last observation, based on Figures 6 through 9, is that the number of sensors used to develop the BFFs affects 
how well the actual aerodynamic forces are modeled.  As the number of sensors increases from 4 to 32, the histograms 
shift in the positive direction – an indication that lower circumferential sensor density results in lower overall 
fluctuation in the resulting BFFs.  This observation is further substantiated and quantified by the median value and 
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percentage of underpredicted cases provided in Table 2.  It should also be noted that the peak associated with the 
reattached flow region shifts entirely to the positive side of the abscissa for the 16-sensors per ring cases, Figure 8.  
Increasing the number of sensors per ring to 32 shifts the histogram even further such that the peak associated with 
the separated flow region is centered on the abscissa origin. 

The mean, median, standard deviation and percentage of BFFs that are underpredicted, corresponding to the 
histograms in Figures 6 through 9, are provided in Tables 2(a-c).  The tables group the data by the number of sensors 
per ring used to develop the BFFs, subdivide the data by region, and by the direction of the BFF component 
(longitudinal, lateral, and vertical).  The data were not separated by angle of attack since it was shown to have minimal 
impact on the histogram trends.  The tables quantify the trends identified in the histograms.  In addition, the table data 
indicates that the standard deviation for the RF region are larger than the standard deviation for the SF region.  This 
observation implies that the current BFF development process is less consistent in modeling the BFFs unsteady 
aerodynamic forces in the RF region than the SF region.  It should also be noted that the number of sensors per ring 
does not affect the standard deviation of the histogram for either region, only the mean values of the percent difference. 

 
(a) 0 degree cases 

 
(b) 4 degree cases 

 
(c) All cases 

Figure 6.  Histogram of percent difference in BFF ΔFrms based on continuous integration and 4 vPTs/ring. 

 

(a) 0 degree cases 

 

(b) 4 degree cases 

 

(c) All cases 

Figure 7.  Histogram of percent difference in BFF ΔFrms based on continuous integration and 8 vPTs/ring. 

 
(a) 0 degree cases 

 
(b) 4 degree cases 

 
(c) All cases 

Figure 8.  Histogram of percent difference in BFF ΔFrms based on continuous integration and 16 vPTs/ring. 
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(a) 0 degree cases 

 
(b) 4 degree cases 

 
(c) All cases 

Figure 9.  Histogram of percent difference in BFF ΔFrms based on continuous integration and 32 vPTs/ring. 

Table 2a. Statistical values percent difference in BFF ΔFx, rms (longitudinal) based on continuous integration 
and vPTs. 

 4 sensor 8 sensor 16 sensor 32 sensor 

Mean 
SF Region -37.7 -33.4 -12.6 -0.4 
RF Region n/a n/a n/a n/a 
Both Regions -37.7 -33.4 -12.6 -0.4 

Median 
SF Region -38.7 -33.2 -12.1 1.0 
RF Region n/a n/a n/a n/a 
Both Regions -38.7 -33.2 -12.1 1.0 

Standard 
deviation 

SF Region 5.4 3.4 5.1 5.4 
RF Region n/a n/a n/a n/a 
Both Regions 5.4 3.4 5.1 5.4 

% under- 
prediction 

SF Region 100 100 100 42.9 
RF Region n/a n/a n/a n/a 
Both Regions 100 100 100 42.9 

 

Table 2b. Statistical values percent difference in BFF ΔFy, rms (lateral) based on continuous integration and 
vPTs. 

 4 sensor 8 sensor 16 sensor 32 sensor 

Mean 
SF Region -46.7 -38.4 -15.7 -4.0 
RF Region -11.5 -2.0 20.2 32.5 
Both Regions -27.1 -18.2 4.2 16.3 

Median 
SF Region -47.1 -38.2 -14.7 -3.9 
RF Region -13.8 -4.4 18.4 31.4 
Both Regions -26.0 -17.5 7.6 16.6 

Standard 
deviation 

SF Region 5.9 4.8 5.8 6.9 
RF Region 16.1 13.0 12.7 13.3 
Both Regions 21.6 20.8 20.6 21.2 

% under- 
prediction 

SF Region 100 100 100 58.9 
RF Region 86.4 63.6 7.1 0 
Both Regions 92.5 79.8 48.4 26.2 
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Table 2c. Statistical values percent difference in BFF ΔFz, rms (vertical) based on continuous integration and 
vPTs. 

 4 sensor 8 sensor 16 sensor 32 sensor 

Mean 
SF Region -45.0 -37.2 -15.0 -3.3 
RF Region -13.2 -1.8 20.7 33.8 
Both Regions -27.3 -17.6 4.9 17.3 

Median 
SF Region -45.0 -37.1 -14.5 -3.6 
RF Region -15.0 -2.6 19.8 34.4 
Both Regions -26.6 -16.5 7.0 17.3 

Standard 
deviation 

SF Region 7.0 5.3 6.7 7.3 
RF Region 10.6 10.5 11.8 13.5 
Both Regions 18.3 19.6 20.3 21.6 

% under- 
prediction 

SF Region 100 100 98.2 57.1 
RF Region 85.7 59.3 5.7 0 
Both Regions 92.1 77.4 46.8 25.4 

 

2. In-Depth Analysis  

In order to better understand the trends identified above, it is useful to examine a single test condition in more detail.  
The condition chosen for this study is Mach 0.92, angle of attack of 0 degrees – a flight condition typically associated 
with large buffet-related aerodynamic fluctuations (Ref. 1, 7, 10).  The impact of azimuthal density of sensors on 
overall fluctuation of BFFs for this test condition is presented in Figure 10, where four circumferential  sensor densities 
in each ring of sensors are shown (4, 8, 16, and 32 vPTs per ring).  The rms values of the various BFFs are compared 
to the continuous uPSP-based BFFs.  There are three interesting trends to note: 1) As the number of sensors is increased 
azimuthally, the rms level of the BFFs increases; 2) On the frustum and within the separated flow region created by 
the frustum, the rms levels are underpredicted by the discrete measurement-based BFFs and as the azimuthal sensor 
density increases, it approaches the continuous integration BFF rms levels; and 3) Aft of the separated flow region 
(>24 inches) the low sensor density BFFs resulted in rms levels on par with the continuous integration.  Increasing the 
sensor density resulted in the overprediction of rms levels.  These observations mirror the ones noted for histograms 
in Figures 6 through 9. 

There are three elements in the BFF development process (Figure 1) that can affect the magnitude of BFF unsteadiness: 
coherence angles, coherence lengths, and unsteadiness changes directly related to the number of sensors used in the 
integration process.  The effect of the number of sensors on each of these parameters is presented in Figures 11 through 
16. 

The effect of azimuthal sensor density on azimuthal coherence angles is presented in Figure 11a.  Coherence angles 
tend to decrease with increasing sensor density.  The cause of this dependence can be identified by examining the 
effect of sensor density on the exponential curve fit employed to identify the angle at which the magnitude-squared 
coherence is equal to 50 percent, more commonly referred to as the coherence angle.   

Figure 12 demonstrates the impact of sensor density on these curve fits.  The separation angle between sensors used 
in the coherence calculation is provided on the abscissa.  The ordinate represents the mean of the coherence function 
calculated for 0.5 to 800 Hz.  The colors indicate the number of sensors used in calculating the force-per-length BFFs 
used in the coherence calculation, and identifies the coherence data used in the calculation of the curve fit.  The four-
sensor rings (red) have a minimum separation angle of 90 degrees.  Increasing the number of sensors in the rings 
reduces the minimum separation angle, which shifts the curve fit to the left, resulting in an improved approximation 
of the exponential decay compared to the experimental data.  The exponential curve fit in Figure 12 is a poor 
approximation of the azimuthal coherence decay, even though it is weighted towards the shorter separation angles 
(Ref. 7). 

During the BFF development process, two longitudinal regions dominated by distinct aerodynamic phenomena were 
identified.  Based on the longitudinal integration boundaries, these aerodynamic regions encompassed model segments 
from 14.70 to 21.10 inches (separated flow region) and 21.10 to 34.60 inches (reattached flow region) – regions 
previously noted in the discussion of Figures 6 through 9.  The effect of azimuthal sensor density on the longitudinal 
coherence lengths within these two aerodynamic regions is presented in Figure 11b.  Within both regions, the 
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coherence lengths increase if the azimuthal sensor density is increased.  Unlike the coherence angles, where an increase 
in the number of sensors per ring reduced the separation distance between sensors, the separation distance between 
the rings of sensors does not change, as is noted by the fixed separation distances in Figure 13 – the impact of azimuthal 
sensor density on longitudinal coherence and exponential fit of its decay.  The trends noted in Figure 13 indicate that 
the change in longitudinal coherence is purely a function of BFF frequency content and how it is affected by the 
number of sensors in each ring. 

The effect of sensor density on coherence is presented in Figures 14 and 15.  Longitudinal coherence functions for 
sectional BFFs calculated between stations 15.57 and 16.87 inches (located in the SF Region) are presented in Figure 
14 and coherence functions for sectional BFFs calculated between stations 28.97 and 33.00 inches (located in the RF 
Region) are presented in Figure 15.  Within both aerodynamic regions, coherence functions based on 4-sensor BFFs 
(red line) significantly underpredict the coherence compared to BFFs developed based on continuous circumferential 
integration (black).  Increasing the number of sensore from 4 to 8 (maroon line) in the sensor rings increased the 
magnitude of the coherence function, particularly in frequency ranges where coherence is already elevated.  Increasing 
the sensor density from 8 (maroon) to 16 (purple) or 32 (red) sensors per ring provides some limited improvement in 
the convergence of the coherence function to the function developed based on continuous circumferential integration 
(black).   

The third component affecting the magnitude of BFF unsteadiness is the number of sensors per ring.  To isolate the 
impact of sensor azimuthal density, force-per-length BFFs were developed with and without azimuthal coherence 
factors – longitudinal coherence factors are not applied to force-per-length BFFs.  Force-per-length BFFs were 
developed using 4, 8, 16, and 32 vPTs per ring and compared to the continuously-integrated force-per-length loads 
developed using uPSP measurements at the same locations as the rings of vPTs.  The trends in ΔFrms levels for a 
sample case are presented in Figure 16.   

Trends in rms levels for force-per-length BFFs without azimuthal coherence are presented in Figure 16a.  Low 
azimuthal sensor density resulted in overpredictions in rms levels, since the integration process assumed full coherence 
across the integration arc length.  Increasing the azimuthal sensor density converges the rms levels to the continuous 
integration BFFs from above – implying overprediction in the overall fluctuation levels, if azimuthal coherence is not 
applied.   

The inclusion of azimuthal coherence factors (Figure 16b) significantly changes the above trends.  For most of the 
stations examined, the inclusion of azimuthal coherence factors resulted in the 4-sensor-based BFFs underpredicting 
the overall fluctuation level.  Increasing the sensor density increased the rms values closer to the continuous integration 
rms values.  32-sensor ring force-per-length BFFs overpredicted the overall fluctuation.  The crossover point from the 
rms levels being lower than the continuous integration force-per-length BFF rms levels occurred between 8 and 16 
sensors in a ring.  This finding indicates that the current approach of determining azimuthal coherence factors for 
reducing overprediction inherent in the azimuthal integration of discrete pressure measurement needs to be refined. 

 

Figure 10.  Comparison of BFF ∆Frms continuous vs. discrete, M=0.92, α=0°. 
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(a) Coherence angles (b) Coherence lengths 

Figure 11.  Comparison of coherence lengths and angles as a function of sensor circumferential density, 
M=0.92, α=0°. 

 
(a) Station x=15.57 in (SF region) 

 
(b) Station x=28.97 in (RF region) 

Figure 12.  Effect of sensor circumferential density on exponential fit of azimuthal coherence decay, M=0.92, 
α=0°. 

 
(a) SF region 

 
(b) RF region 

Figure 13.  Effect of sensor circumferential density on exponential fit of longitudinal coherence decay, 
M=0.92, α=0°. 
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Figure 14.  Effect of sensor circumferential density on longitudinal coherence in force-per-length Fz between 
x=15.57 in & x=16.87 in (SF region), M=0.92, α=0°. 

 

Figure 15.  Effect of circumferential sensor density on longitudinal coherence in force-per-length Fz between 
x=28.97 in & x =33.00 in (RF region), M=0.92, α=0°. 

(a)  No azimuthal coherence applied 
 

(b) Azimuthal coherence applied 

Figure 16.  Effect of sensor circumferential density on force-per-length BFF unsteadiness, M=0.92, α=0°. 
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3. Spectral Content  

Up to this point, the adequacy of the BFF development process has been assessed using rms values of the BFF time 
histories.  From a numerical perspective, root-mean-square of a signal is related to the area under the curve of a power 
spectral density function (PSD) of the signal in question, thereby providing a simple method to quantify the overall 
fluctuation in the signal.  While this approach lends itself to examining large data sets, it provides no insight into the 
frequency content of the BFFs – an important consideration when applying BFFs to structural models of a launch 
vehicle.  Missing or additional frequency content in a BFF can result in under- or over-exciting a structural mode in 
the vehicle structural analysis.  The vehicle and component structural design is affected by response considerations 
and a lack of understanding of the BFF frequency content requires larger uncertainty factors, resulting in a heavier, 
less efficient structure and ultimately reduced payload capability.   

One method to understand the differences in the frequency content of discrete measurement-based BFFs and uPSP-
based BFFs is to compare their PSDs.  With hundreds of PSDs in this data set, individual PSD comparisons are not a 
practical approach.  Therefore, two-dimensional histograms were developed that provide the distribution of the percent 
error between PSDs of discrete measurement-based BFFs and uPSP-based BFFs as a function of frequency.  The 
percent error is defined such that a positive value indicates an overprediction.  A series of these histograms is presented 
in Figures 17 through 20.  These histograms were developed using the following procedure: 

1. PSDs were calculated for BFFs developed using discrete measurements (vPTs) and continuous uPSP 
integration over the area associated with each ring of sensors for all test conditions.   

2. A percent error as a function of frequency is calculated for each corresponding PSD pair.   

3. Using all test conditions, a histogram of the error distribution is developed for each PSD frequency bin.   

4. A contour plot is assembled based on the histograms calculated in step 3, where the abscissa represents the 
frequency bins, ordinate represents the percent error, and the color intensity represents the percentage of 
instances (i.e. probability) within each error bin.   

5. The median of this error distribution as a function of frequency represented by a red curve is added.  
Additionally, green lines envelope 50 percent of all instances about the median value as a function of 
frequency, while the yellow lines envelop 75 percent of all instances.   

The histograms presented in Figures 17 through 20 present the distribution of PSD error for BFFs based on 4, 8, 16, 
or 32 sensors per ring, respectively.  Each figure includes two histograms:  the BFFs from the SF Region (subfigure 
a), and second is for BFFs from the RF Region (subfigure b).  There are three trends to note in these figures.  The first 
observation is that as the number of sensors per ring is increased, the PSDs of discrete measurement-based BFFs shift 
in the positive (overpredicting) direction.  This observation confirms the trend identified through the rms analysis 
(Figures 6 through 9 and Table 2).   

The second observation is that the scatter in the PSD error is larger above the median value (red line) than below it 
(see the 50 and 75% envelope lines).  The other discernable trend is that the skewing in the error distribution is more 
pronounced at higher frequencies.  The most likely cause of this trend is that at higher frequencies the PSD values are 
smaller, thereby small changes in the PSD magnitude can produce large percent error.  

The last observation is that the level of overprediction of the BFFs increases at higher frequencies.  These observations 
hold true for both the SF and RF regions.  The 4-sensors per ring BFFs significantly underpredict the BFF fluctuations 
at low frequencies and overpredict them at high frequencies, although the SF region low-frequency underpredictions 
are larger than those in the RF region and RF region high-frequency overpredictions are larger than those for the SF 
region, compare Figures 17(a and b).  As the number of sensors per ring increases to 16, the median error of the low-
frequency PSD in the RF region is always positive, indicating that in all PSD frequency bins, the discrete 
measurement-based BFFs are overpredicted at least 50 percent of the time.  Increasing the number of sensors per ring 
to 32 continues the above trends, providing some low-frequency improvements in the SF region, while increasing the 
overprediction elsewhere.   

The underprediction of low frequency signals and overprediction of high frequency signals may be an artifact of the 
method used to calculate the coherence factors in the development of the BFFs.  Coherence factors are calculated 
using an average of the coherence function over a frequency range.  Generally, coherence is highest at low frequencies 
and attenuates with increasing frequency, therefore, the average coherence value will be lower than the actual low 
frequency coherence, and greater than the high frequency coherence, as demonstrated in Figure 21.  The coherence 
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factors adjust the effective integration area for the measured pressures, therefore, using an average value in calculating 
the coherence factors has two unintended consequences:  the low frequency pressure signal is integrated over an 
undersized effective area, and higher frequency signals are integrated over an oversized area.  Simply put, at 
frequencies approaching 1600 Hz, coherence is very low, but the effective integration area is still based on low-
frequency coherence, resulting in large overpredictions of the high-frequency PSDs.   

The use of average coherence helps explain why the two aerodynamic regions are affected differently by the change 
in the number of sensors per ring.  Figures 14 and 15 present the coherence functions between two force-per-length 
BFFs in the SF and RF regions, respectively.  The sample coherence function from the SF Region is high at low 
frequencies and quickly drops off – the scenario discussed in the preceding paragraph.  The coherence function from 
the RF region increases at higher frequencies, thereby the mean coherence will be overpredicted at low frequencies as 
well as high frequencies (above 1200 Hz). 

These observations indicate that a frequency-dependent coherence factor formulation should be implemented to more 
appropriately account for the differences in coherence lengths at various frequencies.  A potential approach to 
accomplish this task is proposed in Reference 13. 

 
(a) SF Region 

 
(b) RF Region 

Figure 17.  Histogram of percent difference in BFF PSDs based on continuous integration and 4 vPTs/ring. 

 
(a) SF Region 

 
(b) RF Region 

Figure 18.  Histogram of percent difference in BFF PSDs based on continuous integration and 8 vPTs/ring. 



 

15 

 
(a) SF Region 

 
(b) RF Region 

Figure 19.  Histogram of percent difference in BFF PSDs based on continuous integration and 16 vPTs/ring. 

 
(a) SF Region 

 
(b) RF Region 

Figure 20.  Histogram of percent difference in BFF PSDs based on continuous integration and 32 vPTs/ring. 

 

Figure 21.  Sample coherence function and mean coherence for frequency range 3 to 800 Hz. 
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develop both the discrete measurement-based BFFs and the continuous integration BFFs, it is therefore possible to 
employ cross-PSD analysis to calculate the phase between corresponding BFFs in each data set.  The results of this 
analysis are provided in a series of 2-dimensional histograms presented in Figures 22 through 25.  The histograms are 
created using the same method that is used to create the PSD error histograms (Figures 17 through 20).  In these phase 
histogram plots, positive phase values indicate phase lag of a discrete measurement-based BFF with respect to a 
continuous uPSP integration BFF. 

The histograms in Figures 22 through 25 present the change in phase of BFFs based on 4, 8, 16, and 32 sensors per 
ring, respectively, relative to a continuous uPSP integration BFF.  The median value of the distribution of the phase 
difference is generally close to 0 degrees, indicating that the current approach to developing BFFs does not introduce 
a phase shift into the BFFs, statistically speaking.  These histograms also indicate that the scatter in the distribution of 
the phase change increases as a function of frequency.  Another notable trend is that increasing the number of sensors 
per ring reduces the scatter in the distribution of the phase change.  Therefore, more sensors per ring tends to reduce 
the phase error in the BFFs.   

Ultimately, the importance of the BFF phase should be determined by applying BFFs with varying amounts of phase 
shift to the structural model of a vehicle.  Changing the phase may affect the response of a vehicle mode, and a Monte 
Carlo-type analysis of the phase change could provide a measure of sensitivity of the vehicle response to the 
uncertainty in the BFF phase. 

 
(a) SF Region 

 
(b) RF Region 

Figure 22.  Histogram of phase of BFF CPSD(continuous, 4 vPTs/ring). 

 
(a) SF Region 

 
(b) RF Region 

Figure 23.  Histogram of phase of BFF CPSD(continuous, 8 vPTs/ring). 
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(a) SF Region 

 
(b) RF Region 

Figure 24. Histogram of phase of BFF CPSD(continuous, 16 vPTs/ring). 

 
(a) SF Region 

 
(b) RF Region 

Figure 25.  Histogram of phase of BFF CPSD(continuous, 32 vPTs/ring). 

D. Effect of Longitudinal Sensor Ring Density 

In the preceding discussion, Section III.A, the section of the BVT model where the uPSP measurements were validated 
was divided into nine longitudinal segments and BFFs were developed for each segment.  To examine the impact of 
longitudinal sensor density on the resulting BFFs, each of these nine segments was subdivided into a series of 
longitudinal segments approximately 0.25 inches in length.  This division process resulted in 92 segments and a ring 
of eight axisymmetrically-spaced vPTs was located at the longitudinal center of each new segment.  Figure 26 presents 
the new longitudinal integration boundary distribution.  The locations of the longitudinal boundaries of the original 
nine segments are shown in green and the additional boundaries of the new segments are presented in blue. 

The new sensor locations and integration boundaries were used to develop new BFFs using the standard approach 
outlined in Ref. 7.  The 0.25 inch longitudinal integration length for these new BFFs was an order of magnitude shorter 
than the calculated coherence lengths for all cases – effectively eliminating the longitudinal coherence factor from the 
BFF calculation.  For ease of comparison, the previously-defined aerodynamic regions were not adjusted, even though 
the increased longitudinal sensor density may better identify the transition station between the SF and RF regions.   

The BFFs for the new, smaller segments were grouped together based on the longitudinal integration boundaries of 
the original BFFs.  By summing each of these nine groups of BFFs, composite BFFs equivalent to the original, larger-
integration-area BFFs were developed.  These composite BFFs can be compared to the original BFF to determine the 
appropriateness of the longitudinal coherence factors implementation. 
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The rms error between the composite BFFs and the continuous integration BFFs are provided in Figure 27.  Comparing 
the composite BFF rms errors to the original BFFs rms errors in Figure 7, indicates that the shorter longitudinal 
integration lengths eliminated the mean offset in rms error between the SF and RF regions – the histogram of all the 
test cases (Figure 27c) exhibits a single peak, Gaussian distribution instead of the dual peak distribution found in 
Figure 7c.  This single peak appears to be located in between the original SF and RF peaks found in Figure 7, indicating 
that decreasing the longitudinal integration length reduced the underprediction of the SF region BFFs, but increased 
the underprediction of the RF region BFFs.  For completeness, the statistical values for the histogram in Figure 27c 
are provided in Table 3.   

The reason for the collapse of the two peaks in Figure 7c into a single peak in Figure 27c can be inferred by examining 
the 2-dimenstional histograms of the error between PSDs of the combined BFFs and the continuous integration BFFs, 
provided in Figure 28.  Both the SF and RF region 2-dimenstional histograms indicate that the composite BFFs 
generally underpredict the unsteadiness throughout the entire frequency range of interest. This trend differs from the 
original BFFs, provided in Figure 18, where the PSDs overpredict the high frequency fluctuations.  The shorter 
longitudinal integration lengths had two other consequences.  First, the median value (red line) of the RF region BFFs 
seem to be more underpredicted in the 400 to 1200 Hz range than the SF region BFFs (compare Figure 28a to Figure 
28b), while in the original BFFs (Figure 18), the trend in median values is similar.  This difference may contribute to 
the increase of RF BFF underprediction.  The last notable observation is that the shorter integrations lengths reduced 
the scatter in the histograms compared to the original BFFs (compare range of the 50% (green) and 75% (yellow) 
envelope lines in Figures 18 and 28).   

The difference in the higher-frequency portions of the PSDs may be caused by either the BFF summation process or 
the short longitudinal integration lengths.  Summing the forcing functions calculated at multiple longitudinal stations 
to produce a combined BFF is the equivalent of producing a BFF by integrating a very coarse uPSP grid – indicating 
the effect of uPSP surface grid density not the effect of longitudinal sensor spacing on BFFs.  On the other hand, the 
shortened longitudinal integration lengths of the 92 segments eliminated the longitudinal coherence factors.  The 
change in the PSDs for the combined BFFs may be an indication that the present implementation of the longitudinal 
coherence factors is not appropriate for adjusting the high frequency content of BFF.  To properly ascertain this issue, 
new continuous integration BFFs need to be developed for the smaller integration areas and compared to the small-
segment BFFs. 

 

Figure 26.  Longitudinal integration boundaries for increased longitudinal sensor density. 

 
(a) 0 degree cases 

 
(b) 4 degree cases 

 
(c) All cases 

Figure 27.  Histogram of percent error in BFF ΔFrms based on continuous integration and combined BFFs, 8 
vPTs/ring, (RF region data defined by thicker outline) . 



 

19 

Table 3. Statistical values of percent error in BFF ΔFrms based on continuous integration and combined BFFs, 
8 vPTs/ring. 

 Long. Lateral Vertical 

Mean 
SF Region -29.8 -30.2 -29.5 
RF Region n/a -25.4 -23.9 
Both Regions -29.8 -27.6 -26.4 

Median 
SF Region -30.2 -30.2 -29.6 
RF Region n/a -25.6 -23.9 
Both Regions -30.2 -27.3 -26.4 

Standard 
deviation 

SF Region 2.5 2.9 3.5 
RF Region n/a 2.5 2.8 
Both Regions 2.5 3.6 4.2 

% under- 
prediction 

SF Region 100 100 100 
RF Region n/a 100 100 
Both Regions 100 100 100 

 

 
(a) SF Region 

 
(b) RF Region 

Figure 28.  Histogram of percent error in BFF PSDs based on continuous integration and combined BFFs, 8 
vPTs/ring. 

E. Effect of Longitudinal Placement of Sensor Ring within Each Integration Region 

One of the assumptions in the BFF development process is that, unless there is a large OML change, the surface area 
integration boundaries associated with each transducer are set to be the midpoints between adjacent transducers.  While 
this assumption is intuitive in nature, and the phase change histograms (Figures 22 through 25) indicate that this is the 
correct approach to defining the integration boundaries, the sensitivity of discrete measurement-based BFFs to the 
longitudinal location of sensors within the integration region was examined to provide further confirmation of this 
assumption.  To conduct this study, the longitudinal integration boundaries for the rings of sensors were held constant, 
and new rings of vPT were extracted from the uPSP data near the forward and aft ends of the integrations segments.  
For this study, only the BFFs based on 8 vPTs per ring were examined. 

These new vPTs were used to develop BFFs for the same integration areas, and PSD error and cross PSD phase 2-
dimensional histograms were created and are presented in Figures 29 through 32.  The change in longitudinal location 
of the sensors within the integration boundaries had a minor effect on the magnitude of the PSD error, compare Figures 
29 and 30 to Figure 18, although this observation may not hold true for large integration areas with significantly 
varying pressure gradients.   

Conversely, the longitudinal location of the sensors within each integration area significantly affects the phase of the 
discrete-measurement-based BFF relative to the continuous integration BFF.  Figures 31 and 32 present 2-dimensional 
histograms demonstrating the effect of longitudinal sensor placement on the phase angle difference between discrete-
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measurement-based and continuous integration BFFs.  In Figure 31, the case where the sensors are located towards 
the forward end of the integration segments, the histogram indicates that moving the sensors forward in the integration 
area introduced a negative phase angle bias in the histogram, particularly at higher frequencies, indicating a phase lead 
in the discrete measurement based BFFs relative to the continuous integration BFFs (compare Figure 31 to Figure 23).  
The opposite trend in phase is noted when the sensors are located towards the aft end of the integration segment, 
Figure 32.  These observations suggest that sensors should be located close to the center of each integration region.   

It should be noted that in both cases, the phase difference in the RF region seems more sensitive to the longitudinal 
placement of sensors (compare subfigure a to subfigure b in Figures 31 and 32).  The cause of this difference is that 
the integration areas in the RF regions are larger (see Figure 26), so the longitudinal distance that the sensors were 
moved relative to their original placement was also larger, resulting in a greater change in the phase of the BFFs.   

The discussion in the section was limited to BFFs based on 8 vPTs per ring.  The same analysis was conducted for 
BFFs based on 4 vPTs per ring (not presented) and it was found that the trends noted above did not differ substantially, 
an indication that azimuthal sensor density does not affect the above conclusions. 

 
(a) SF Region 

 
(b) RF Region 

Figure 29.  Histogram of percent error in BFF PSDs based on continuous integration and 8 vPTs/ring, 
forward sensor location. 

 
(a) SF Region 

 
(b) RF Region 

Figure 30.  Histogram of percent error in BFF PSDs based on continuous integration and 8 vPTs/ring, aft 
sensor location. 
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(a) SF Region 

 
(b) RF Region 

Figure 31.  Histogram of phase of BFF CPSD(continuous, 8 vPTs/ring), forward sensor location. 

 
(a) SF Region 

 
(b) RF Region 

Figure 32.  Histogram of phase of BFF CPSD(continuous, 8 vPTs/ring), aft sensor location. 

F. Center of Pressure  

The BFFs for each longitudinal segment of the launch vehicle are based on a single ring of sensors measuring pressure 
at that particular station within the segment.  A single ring of sensors cannot provide an accurate estimate of the 
location center of pressure for a given segment due to the spatially- and temporally-varying nature of the surface 
pressure.  The BFF development process assumes that the measured pressure from each sensor is constant over its 
area of integration and therefore the center of pressure for each integration segment is the centroid of the projected 
area.   

The appropriateness of this center of pressure location approximation cannot be ascertained using sparsely-spaced 
discrete pressure measurements, but the uPSP data provides the ability to do so.  To accomplish this task, moments 
about the vehicle nose are calculated by integrating uPSP surface pressure for each longitudinal segment of the model 
and dividing by the net force produced by the pressure on the same longitudinal segment – see equation below,  

ሻݐര௖௣ሺݔ ൌ
∬ܲሺݔ, ,ߠ ,ݔොሺݑሻݐ ݔ݀ߠ݀ݔሻݔሺݎሻߠ

∬ܲሺݔ, ,ߠ ,ݔොሺݑሻݐ ݔ݀ߠሻ݀ݔሺݎሻߠ
 

where ݔര௖௣ሺݐሻ is the time history of the center of pressure in the lateral and vertical directions, P is the surface pressure, 
ොݑ  is the unit surface normal vector, θ is the azimuth angle, r is the radius, and x is the longitudinal coordinate. 
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The histograms of center of pressure time histories for each integration segment, presented in Figure 33, were created 
utilizing data from all 28 uPSP cases available for this study with the longitudinal center of pressure location for each 
model segment normalized by the longitudinal length of the segment.  The leading edge of the segment is located at 
0 and trailing edge of the segment is located at a value of 100.  Each histogram includes the normalized mean value 
for the center of pressure location and the normalized standard variation of the center of pressure motion.  The vertical 
red line represents the center of pressure location assumed by the BFF development analysis, which is based on the 
geometry of the model segment. 

The histograms in Figure 33 indicate that assuming that the center of pressure is located at the centroid of the projected 
area is a reasonable one.  For all BFFs, the assumed center of pressure was within three percent of the average location 
of the actual center of pressure.  The standard deviation of the center of pressure is smaller on the frustum, Figures 
33(a through d), than on the barrel section of the model, Figures 33(e through r).  This difference in standard deviation 
implies that the motion of the center of pressure is much more dynamic on the barrel section of the model than on the 
frustum. 

 

Figure 33.  Histogram of the variation in the vertical and lateral center of pressure location. 
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IV. Conclusions 

A wind tunnel test of a generic launch vehicle forebody was conducted at the Ames Unitary Plan Wind Tunnel to 
characterize its transonic buffet environment.  The test used a highly instrumented version of the Coe and Nute Model 
11 test article first examined in the 1960s.  The primary measurement technique used during this test was unsteady 
pressure sensitive paint (uPSP).  This optical measurement technique provided unsteady pressure measurements at 
over 300,000 locations on the surface of the model – a continuous measurement of the surface pressures compared to 
the traditional, sparsely-spaced discrete pressure measurements.  This high spatial surface density measurement 
technique provided an opportunity to examine in depth the assumptions underpinning the development of buffet 
forcing functions (BFFs), used in the development of the Space Launch System (SLS) vehicle.  This task was 
accomplished by extracting pressure measurements at discrete locations on the model (typical for a standard launch 
vehicle buffet test) from the uPSP dataset, developing BFFs using the analytical techniques used by the SLS program, 
and comparing them to equivalent forces developed by continuously integrating the uPSP data. 

Comparison of discrete measurement-based BFFs to continuous uPSP-based BFFs indicates that 

 Utilizing a pressure sensor distribution typical for a launch vehicle buffet model resulted in significant under-
predictions in the overall BFF fluctuations, based on root-mean-square (mean removed) calculation.  Power 
spectral density functions indicated that the BFFs underpredicted the low frequency content, while over-
predicting the high frequency content in the BFFs.  These trends may be caused by the implementation of the 
coherence factors based on the mean value of the coherence function over a selected frequency range.  This 
approach underestimates the coherence function at frequencies where its value is large and overestimates the 
coherence function at frequencies where its value is small. 

 The approach to locating the integration boundaries at major changes in the model outer mold line and halfway 
points between adjacent sensors does not introduce significant phase shift in the BFFs compared to the continuous 
integration BFFs.   

 The current BFF development process does not introduce large phase shift in the discrete measurement based-
BFFs relative to continuously integrated BFFs.  The phase shift is reduced with increasing number of sensors in 
a ring of sensors. 

 Overall fluctuation of the BFFs is highly sensitive to the azimuthal sensor density.  Without azimuthal coherence 
factors, the overall fluctuation of the BFFs is overestimated and decreases with increasing sensor density.  
Applying azimuthal coherence factors results in underestimation of the overall fluctuation when the BFFs are 
based on four axisymmetrically distributed sensors, and generally overestimated when 16 or more sensors are 
used. 

 Longitudinal sensor density variation indicates that the large overprediction of the higher frequency component 
of the BFFs may be caused by the long longitudinal integration lengths that are not appropriately adjusted by the 
coherence factor.  These factors are based on a mean value of the coherence function across a specified frequency 
range.  This approach underestimates the coherence function at frequencies where its value is large and 
overestimates the coherence function at frequencies where its value is small.  A frequency-based coherence factor 
may resolve this estimation problem. 

 The center of pressure for various longitudinal segments of the model were calculated using uPSP data.  The 
resulting center of pressure time histories indicate that the motion of the center of pressure is highly dynamic, but 
the mean value corresponds well with the assumption that the center of pressure acts at the centroid of the 
projected area of the integration region.   
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