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Abstract 

 
A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified 

a Mach number regime where unusually large buffet loads are present.  A 
subsequent investigation identified the cause of these loads to be an alternating flow 
phenomenon at the Crew Module-Service Module junction.  The conical design of 
the Ares I-X Crew Module and the cylindrical design of the Service Module exposes 
the vehicle to unsteady pressure loads due to the sudden transition from separated 
to attached flow about the cone-cylinder junction with increasing Mach number. 
For locally transonic conditions at this junction, the flow randomly fluctuates back 
and forth between a subsonic separated flow and a supersonic attached flow.  These 
fluctuations produce a square-wave like pattern in the pressure time histories 
which, upon integration result in large amplitude, impulsive buffet loads.  
Subsequent testing of the Ares I RBM found much lower buffet loads since the 
evolved Ares I design includes an ogive fairing that covers the Crew Module-Service 
Module junction, thereby making the vehicle less susceptible to the onset of 
alternating flow.  An analysis of the alternating flow separation and attachment 
phenomenon indicates that the phenomenon is most severe at low angles of attack 
and exacerbated by the presence of vehicle protuberances.  A launch vehicle may 
experience either a single or, at most, a few impulsive loads since it is constantly 
accelerating during ascent rather than dwelling at constant flow conditions in a 
wind tunnel.  A comparison of a wind-tunnel-test-data-derived impulsive load to 
flight-test-data-derived load indicates a significant over-prediction in the magnitude 
and duration of the buffet load. 

 

 
Note To Readers 

 
 The predicted performance and certain other features and characteristics of the Ares I and Ares I-X launch 
vehicles are defined by the U.S. Government to be Sensitive But Unclassified (SBU).  Therefore, details have been 
removed from all plots and figures. 
 

I.  Introduction 
 

 One of the many buffet events that can be encountered by a launch vehicle during assent is a transition of flow 
from a subsonic to a supersonic flow state at expansion corners created by vehicle geometry changes such as cone-
cylinder junctions.  This event can create a large, abrupt pressure change directly aft of a cone-cylinder junction 
resulting in potentially significant, impulsive loads.  The quasi-steady nature of wind tunnel testing causes this 
transonic event to manifest itself as an alternating flow separation and attachment phenomenon where the flow 
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fluctuates between a separated subsonic flow and an attached supersonic flow.  These random fluctuations between 
the two flow states result in large, abrupt surface pressure changes whose time histories resemble a square wave.  
These square-wave-like pressure time histories produce large buffet loads when integrated around the model 
circumference. 
 This alternating flow phenomenon is well documented in launch vehicle buffet literature1-6.  Chevalier and 
Robertson describe the conditions required for the onset of alternating flow and the physics resulting in the sustained 
fluctuation between the two flow states: 

“The attachment of the flow begins when the momentum of the flow aft of the shoulder [cone-cylinder junction] directed 
toward the cylinder is sufficient to support attachment.  The momentum component directed towards the surface is 
indicated by the overexpansion in this region.  This attachment results in a large increase in local Mach number at the 
shoulder and a corresponding large adverse pressure gradient to decelerate the flow back to free-stream conditions.  The 
boundary layer cannot withstand this gradient and separates at some distance downstream of the shoulder.  This local 
separation being in a supersonic flow field produces a near normal shock wave, and the accompanying large back 
pressure feeds forward to the shoulder.  The resulting forward progression of the separation point can cause the flow to 
revert to the initial separated flow conditions.  With the original conditions established the cycle starts again with 
attachment.”1 

This alternating separation and attachment flow event was encountered7 during transonic buffet investigations of the 
Ares I family of launch vehicles at NASA Langley’s Transonic Dynamics Tunnel (TDT)8-11.  For these 
investigations, rigid, geometrically-scaled (3.5 percent) wind-tunnel models of the Ares I-X Flight Test Vehicle 
(FTV) and Ares I Crew Launch Vehicle were designed, fabricated, and furnished with a suite of sensors.  Both 
models were instrumented with a large number of miniature unsteady pressure transducers located in the vicinity of 
the region affected by the alternating flow phenomenon providing a unique opportunity to examine this phenomenon 
using a much greater sensor density and higher sample rate than previously available. 
 The goal of these tests was to develop buffet forcing functions that are used by the Ares program to predict 
vehicle loads and responses due to transonic buffet phenomena.  Although the analysis of the alternating flow 
phenomenon is only a subset of the test goals, it is the primary focus of this paper.  In particular, the paper will 
describe the methods developed to model the alternating flow in the Ares I-X buffet forcing functions and to provide 
additional insight into this phenomenon based on the acquired test data. 
 

II.  Background 
 
A.  Test description 
 Two 0.035-scale Rigid Buffet Models (RBM) of the Ares I-X and Ares I launch vehicles, presented in Figure 1, 
were tested at NASA Langley’s Transonic Dynamics Tunnel to assess the transonic buffet environment.  The TDT, 
depicted in Figure 2, is a 16-foot-by-16-foot test section, closed-circuit, continuous flow wind tunnel built for the 
purposes of conducting aeroelastic research and of clearing vehicles of aeroelastic phenomena such as flutter.  The 
TDT is capable of testing over a range of stagnation pressures from near vacuum to atmospheric and Mach numbers 
from near zero to 1.2 in both air and R134a heavy gas test medium.   
 

 The models developed for this project were rigid, not aeroelastically scaled.  Each model was instrumented with 
256 miniature unsteady pressure transducers embedded in the model skin in rings of four or eight transducers along 
the length of the model to record time correlated unsteady surface pressure responses.  Each data record consisted of 
30 second time histories acquired at a 12 KHz sample rate, with a 4.5 KHz anti-aliasing filter.  The models were 

   
(a) Ares I-X     (b) Ares I 

Figure 1.  Rigid Buffet Models installed in the TDT test section. 
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Figure 2.  NASA Langley’s Transonic Dynamics Tunnel. 

 

 
Figure 3.  Forcing functions acting on the centerline of a 

model. 

tested with and without protuberances, at Mach 
conditions ranging from 0.8 to 1.2 in air and R134a 
heavy gas test mediums.  For each Mach number, 
the effect of model attitude on buffet was assessed 
by obtaining data at combinations of model pitch 
and roll angles of -8 to 8 degrees and -180 to 180 
degrees, respectively.  Further discussion of Ares I-
X and Ares I buffet testing and analysis can be 
found in References 8 through 11. 
 
B.  Buffet Forcing Function Development 
 Buffet Forcing Functions (BFFs) are a series of 
orthogonal force time histories acting at the 
centerline of a launch vehicle model (see Figure 3).  

These time histories represent the unsteady 
aerodynamic loads acting on each segment of the 
model.  The loads are obtained by integrating 
measured pressures from rings of transducers 
distributed along the longitudinal axis of the model.   
 The BFFs can be calculated using two methods 
of pressure integration yielding either sectional 
(force/length) or point (force) loads - each useful for 
different types of analyses.  Sectional loads, depicted 
in Figure 4a, are calculated by integrating the 
measured pressures along the circumference at the 
station where they were measured.  These BFFs 
have units of force-per-length and are useful for comparing the relative strength of the buffet loads at various vehicle 
stations.  Point forces, portrayed in Figure 4b, are calculated by integrating the measured pressures circumferentially 
and longitudinally over a segment of the model.  Loads calculated through this method are used to conduct the 
buffet loads analysis and represent the total buffet load acting on a segment of the vehicle.  The subject matter of 
this paper dictates that the sectional loads, or force-per-length loads, are used through most of the paper.  

 
 

C.  Manifestation of Alternating Flow 
 Figure 5 presents a sample surface pressure time history measured by a transducer placed near the Crew Module 
(CM)-Service Module (SM) junction, an expansion corner on the upper stage of the Ares I-X, that can be seen in the 
photograph in Figure 6.  The large abrupt jumps in the pressures indicate the change of flow states from a separated, 
subsonic flow to an attached, supersonic flow or vice versa.  The occurrences of these jumps are random and appear 
not triggered by model dynamics or facility phenomena such as free-stream pressure fluctuation due to tunnel drive 
blade passage. 

 

 
Figure 5.  Sample pressure time history of alternating flow. 
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(a) Sectional load integration.  (b) Point load integration. 

Figure 4.  Loads resulting from two methods of pressure integration. 
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Figure 6.  Close-up of the Crew Module/Service 
Module junction on the Ares I-X RBM. 

 The aerodynamic phenomenon causing these abrupt 
changes in the surface pressure was also observed using 
shadowgraphs, a qualitative visual measurement 
technique.  Figures 7(a and b) present two 
shadowgraphs of the flow expansion at the CM-SM 
junction identifying the distinct shock structures 
associated with the two flow states.  The location on the 
Ares I-X vehicle where these shadowgraphs were 
acquired is identified by a box on the vehicle schematic 
in Figure 7.  The dark region at the top of each figure is 
the shadow of the lower half of the Ares I-X Launch 
Abort System (LAS), CM, and SM projected onto the 
far wall of the TDT test section using a high intensity 
light source shone through the control room windows.  
A red line was added to the figure to accentuate the 
outline of the model.  The flow in both figures is from 
the right to the left and emanating from the bottom of the Ares I-X outline are shadows of shock waves created by 
the flow around the expansion corner.  Figure 7a presents the shock structure existing near the expansion corner 
when the flow traverses the corner in a separated, subsonic state.  A weak shock is emanating from the expansion 
corner and a faint terminal shock can be identified further downstream.  At some distance off the surface the two 
shocks can be seen to join together.  Figure 7b presents the shock structure created by supersonic flow around the 
expansion corner.  An expansion fan shock is present at the corner and an oblique shock is visible downstream of the 
expansion fan.  Further down the vehicle, a stronger terminal shock than the one found in Figure 7a can be seen.  It 
emanates from the vehicle and combines with the oblique shock at some distance off the vehicle surface.  These two 
shock structures at the expansion were also noted during a CFD analysis of this problem6. 

 
 

III.  Development of Tools for Identification and Analysis of Alternating Flow 
 

A.  Identification of Alternating Flow in Test Matrix  
 Buffet forcing functions were developed for a range of Mach numbers and a series of model attitudes which span 
the predicted trajectories of both the Ares I-X and Ares I.  Since numerous test conditions exist were the alternating 
flow phenomenon may be present, a method was needed to help identify these test conditions.  
 The two flow states in alternating flow have significantly different mean pressures and the change between the 
two states is very abrupt.  These pressure jumps result in very large root-mean-square (rms) values for the time 
histories and therefore can be used to identify flight conditions affected by this phenomenon.   
 Figure 8(a-b) presents a color intensity plot of the peak rms value of the fluctuating component of the pressure 
coefficient, Cp,rms, measured on the model as a function of model pitch angle and Mach number for (a) Ares I-X 
and (b) Ares I RBMs.  Figure 8a indicates a region of high Cp,rms values in the vicinity of Mach 0.9, suggesting the 
presence of alternating flow.  This figure also indicates that the alternating flow occurs at higher Mach numbers as 
model pitch is increased.  This influence of model pitch on the critical Mach number is substantiated by a previous 
study that noted the same observation1.  The Mach number at which the high Cp,rms region occurs seems to show 

 

 

 
(a) Subsonic, detached flow   (b) Supersonic, attached flow 

Figure 7.  Shadowgraph of the Ares I-X RBM shock structure at the expansion corner, protuberances on. 
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some asymmetric dependence on model pitch.  A probable source of this asymmetry is the presence of a large 
protuberance, the CM-SM umbilical, on the Ares I-X RBM at the cone-cylinder/CM-SM junction.  
 Ares I maximum Cp,rms as a function of Mach number and model pitch is presented in Figure 8b.  As in the Ares 
I-X data, the peak Cp,rms levels increase near Mach 0.9, but the maximum fluctuating pressures are significantly 
smaller than those experienced by the Ares I-X at the same test conditions.  This reduction in pressure coefficient 
rms levels can be attributed to a change in vehicle design - using an ogive fairing in lieu of a cone-cylinder junction.  
The increase at Mach 0.9 in Cp,rms is created by a terminal shock moving across the surface of the ogive fairing.  
The second region of high Cp,rms levels occurs between Mach 0.95 and 1.  This increase is caused by a shock wave 
located at the frustum of Ares I.  Neither of these events is associated with an alternating flow phenomenon.  The 
geometric changes made as the design matured from the Ares I-X to the Ares I configuration eliminated the 
conditions required for the onset of alternating flow separation and attachment phenomenon. 
 

 
 

B.  Analysis of Pressure Time Histories 
 Figure 9 presents the time histories of pressures measured by a ring of eight transducers just downstream of the 
expansion corner formed by the Ares I-X CM-SM junction at a test condition of Mach 0.9 and 0 degrees model pitch 
and roll.  The time histories of 7 out of the 8 transducers indicate the presence of alternating flow.  A low-pass filter 
was employed to eliminate the higher frequency content of the time histories, thereby more clearly identifying the 
(running) mean pressure jumps associated with the changes in flow state (see green trace in Figure 9).  A closer 
examination of Figure 9 indicates that adjacent transducers often change their mean pressures almost 
simultaneously.  Transducers at azimuth angles 270, 315, and 0 degrees display a close relationship in the flow state 
across these three transducers.  Likewise, the pressures measured by transducers at azimuth angles 45, 90, 135, and 
180 degrees generally tend to change states together.  Furthermore, even though the flow states at azimuths 0 and 45 
degrees are different, the pressure time histories indicate a level of interdependency of the local flow fields at the 
two transducers.  The fluctuating pressures indicate a near simultaneous, but opposing change in the flow states at 
the two locations (see Figure 9, events at t=3 sec and t=14 sec).   
 A closer examination of the start times of these near simultaneous pressure changes measured at 0 and 45 degree 
azimuth was conducted to identify which region of the circumference first transitions from one flow state to the 
other.  Events were identified in both pressure time histories where a pressure jump in one time history was found to 
precede a pressure jump in the other time history.  This observation indicates that the change in flow state at either 
transducer can precipitate a change in flow state at the other transducer.     
 Histograms were used to identify alternating flow events in the pressure time histories.  Figure 10 presents the 
histograms of the pressure time histories presented in Figure 9.  Unlike a typical, random pressure fluctuation that 
has a Gaussian distribution, alternating flow histograms exhibit a double peak distribution.  This double peak 
distribution is found in most of the histograms associated with the pressure time histories in Figure 9.  The relative 
amplitudes of the peaks are an indication of the prevalence of each flow state.   

               
(a) Ares I-X    (b) Ares I   

Figure 8.  Contour plot of peak Cp,rms versus model pitch and Mach number, protuberances on. 
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 Figure 11 present histograms of the pressure time histories measured by the same transducers, but at a model 
angle of attack of 4 degrees.  The histograms indicate that the transducer at model azimuth angle of 135 degrees is 
experiencing pressure fluctuations created by an alternating flow.  The adjacent locations (90° and 180°) exhibit a 
non-Gaussian distribution of pressure data, indicating the presence of some other aerodynamic phenomenon.  A 
closer examination of the pressure time histories (not presented) points to a combination of shock fluctuation mixed 
with a less frequent occurrence of jumps between the two flow states.  The histograms of pressures at 270, 315, 0, 
and 45 degree azimuth angles (leeward side of the model) have Gaussian distributions at pressures indicative of a 
separated, subsonic flow.  

 

               
Pressure           Pressure 

Figure 11.  Histogram of pressure time histories at CM-SM junction, M=0.9, pitch=4°, roll=0°, protuberances 
on.

               
Pressure              Pressure 

Figure 10.  Histogram of pressure time histories at CM-SM junction, M=0.9, pitch=0°, roll=0°, protuberances 
on.

            
Figure 9.  Pressure time histories at CM-SM junction, M=0.9, pitch=0°, roll=0°, protuberances on. 

Unfiltered time histories (blue), low-pass filtered time histories (green). 

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25
Time, sec

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25
Time, sec

0 deg

45 deg

90 deg

135 deg

180 deg

225 deg

270 deg

315 deg

P
re

ss
ur

e 
N

um
be

r 
of

 s
am

pl
es

 p
er

 b
in

 0 deg

45 deg

90 deg

135 deg

180 deg

225 deg

270 deg

315 deg

N
um

be
r 

of
 s

am
pl

es
 p

er
 b

in
 0 deg

45 deg

90 deg

135 deg

180 deg

225 deg

270 deg

315 deg



 
American Institute of Aeronautics and Astronautics 

 

7

 
Figure 12.  Maximum cross-correlation of pressures at CM-SM 

junction, M=0.9, pitch=0°, roll=0°, protuberances on. 
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 The above discussion identifies alternating flow events using a histogram technique, but it does not indicate 
whether the phenomenon occurs simultaneously across multiple transducers.  The cross-correlation function 
between two pressure time histories provides a measure of similitude between the two pressures.  Random pressure 
fluctuations typically have very low coherence as a function of azimuth, and therefore result in low cross-correlation 
values.  Alternating flow is a phenomenon that dominates pressure time histories resulting in high cross-correlation 
values, if observed at multiple transducer locations.  This characteristic can be exploited to identify potential 
alternating flow events that span multiple transducer locations around the circumference of the model.   
 Figure 12 presents a polar plot of the maximum cross-correlation of each pressure time history in Figure 9 with 
every other pressure time history at that model station as a function of azimuth angle.  The radial coordinate of the 
polar plot represents the cross-correlation of two pressure time histories ranging from 0 to 1, where the center of the 
polar plot represents a cross-correlation of 0, or no similitude, and the outer circumference represents a value of 1, or 
complete similitude.  The polar coordinate represents the azimuth angle of the 8 transducers on the model.  In order 
to provide a better understanding of the data presented in this figure, the maximum cross-correlation of pressures at 
0 degrees with respect to the other pressures is represented by the green line in Figure 12.  Pressures at azimuth 
angles 270 and 315 degrees have a high cross-correlation, greater than 0.5, with respect to the pressure at 0 degrees 
azimuth.  The cross-correlation with the remaining pressures is low, less than 0.2.  Seven more sets of maximum 
cross-correlation functions are calculated, one for each of the other seven pressure time histories measured at this 
model station.  These cross-correlation functions are overlaid to create a plot identifying which locations around the 
circumference have similar time histories.  Locations of pressures with high cross-correlation values (greater than 
0.5) are highlighted with thicker lines; otherwise the line thickness is reduced (see Figure 12, 225 degree azimuth 
angle).  The line color is also changed to group together locations whose pressure time histories have a high cross-
correlation.   
 Figure 12 confirms the 
previous, qualitative discussion of 
the pressure time histories 
presented in Figure 9, surmising 
that two circumferential regions 
exist where flow around the 
expansion corner tends to 
simultaneously change states: 
azimuth angles of 270, 315, and 0 
degrees and azimuth angles of 45, 
90, 135, and 180 degrees.  
Although alternating flow can be 
limited to an area encompassing 
only a single transducer, and 
thereby not identified through this 
technique, larger areas of 
alternating flow, detected at multiple locations, are of higher importance due to the magnitude of the loads that they 
can impart on the vehicle. 
 

IV.  Analysis of Alternating Flow Data 
 

 The two aforementioned alternating flow identification techniques, along with Cp,rms values, were used to 
examine the effect of model pitch and protuberances on the presence of the alternating flow phenomenon.  Unless 
stated otherwise, all the data presented in the following sections is for a station of transducers just downstream of the 
CM-SM junction at 0.9 Mach number.  This station and this Mach number were chosen because they exhibit the 
most intense examples of the alternating flow phenomenon. 
 
A.  Protuberances on configuration 
 Figure 13 presents the maximum cross-correlation between pressure time histories at Mach 0.9 for model pitch 
angles ranging from -8 to 8 degrees and 0 degree model roll angle.  Figure 13a presents cross-correlation polar plot 
for a 0 degree pitch case, while Figures 13(b-f) present the same data for positive model pitch angles, and Figures 
13(g-k) for negative pitch angles.  For positive pitch angles, the windward side of the model is at 180 degrees 
azimuth, while for negative pitch angles the windward side is at 0 degree azimuth.  The general location of the 
alternating flow phenomenon shows little sensitivity to small (1 degree or smaller) pitch attitudes regardless of sign 

Radial coordinate = Cross-correlation 
Polar coordinate = Azimuth angle (deg) 
 
 0 degree pressure cross-correlation 

(part of Region # 1)  
 

High cross-correlation Region # 1 
 
 

High cross-correlation Region # 2 
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(a) Pitch=0° 

(b) Pitch=1°  (g) Pitch=-1° 

(c) Pitch=2°  (h) Pitch=-2° 

(d) Pitch=4°  (i) Pitch=-4° 

(e) Pitch=6°  (j) Pitch=-6° 

(f) Pitch=8°  (k) Pitch=-8° 
Figure 13.  Maximum cross-correlation of 

pressures as a function of model pitch angle, 
M=0.9, roll = 0°, protuberances on. 
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Figure 14.  Measured Cp,rms as a function of model 

pitch angle and transducer azimuthal location, M=0.9, 
roll = 0°, protuberances on. 
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(Compare Figures 13(a,b, and g)).  For positive and negative 2 degree pitch angles, the alternating flow migrates to 
the windward side of the model.  This tendency of the alternating flow to favor one side of a vehicle over another 
has been noted by Chavalier and Robertson1.  Reference 1 also confirms that the alternating flow sets up on the 
windward side of models with expansion corner geometries similar to the one found on the Ares I-X.  Above two 

degrees of pitch (nose-up or nose-down), the location of 
the high cross-correlation regions is asymmetric indicating 
that protuberances, LAS nozzles and CM-SM umbilical, 
influence the local flow field.   
 The cross-correlation results and insight garnered from 
histograms (not shown) indicate that the relatively high 
cross-correlation values found at pitch angles greater than 
4 degrees nose-up are not caused by an alternating flow.  
This observation was confirmed by examining the pressure 
time histories, which display characteristics more typical of 
a standing shock.  The fact that the high cross-correlation is 
not caused by alternating flow does not denote its absence.  
Alternating flow still occurs at model pitch angles above 4 
degrees, but it is not correlated across multiple transducers.   
 Figure 14 presents a color intensity plot of the Cp,rms 
values of pressure time histories as a function of model 
pitch angle and azimuthal station.  This figure indicates 
that at small model pitch angles (-1 through 1 degree) there 
are large circumferential areas of significant pressure 
fluctuation, indicative of the presence of alternating flow.  
The highest Cp,rms values occur between 0 and 45 degrees, 
in the vicinity of the CM-SM umbilical.  The pressure time 
histories presented in Figure 9 indicate that the large 
Cp,rms values are produced by pressure jumps caused by 
the alternating flow.  Increasing the model pitch, both in 
the positive (nose-up) or negative (nose-down) direction 
generally reduces the Cp,rms values.  For positive pitch 
angles, alternating flow occurs at 135 degree model 
azimuth, while for negative pitch angles it occurs in the 
225 to 270 degree azimuth range. 
 

 

Cp,rms
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(a) Pitch=0° 

(b) Pitch=1°  (g) Pitch=-1° 

(c) Pitch=2°  (h) Pitch=-2° 

(d) Pitch=4°  (i) Pitch=-4° 

(e) Pitch=6°  (j) Pitch=-6° 

(f) Pitch=8°  (k) Pitch=-8° 
Figure 15.  Maximum cross-correlation of 

pressures as a function of model pitch angle, 
M=0.9, roll = 0°, protuberances off. 
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B.  Protuberance off configuration 
 The RBMs were designed with removable protuberances in order to be able to ascertain the contribution of the 
protuberances to the buffet loads.  A protuberance off, or clean, configuration was tested at a limited range of Mach 
numbers which included Mach 0.9.  For the Ares I-X model, the removed protuberances that could affect the 
alternating flow phenomenon included the CM-SM umbilical and the abort motor nozzles (see Figure 6.)  The LAS 
raceway was a permanent feature of the model which could 
potentially affect the flow at the command module.   
 Figure 15 presents the maximum cross-correlation of 
pressures polar plots as a function of model pitch angle for 
the protuberance off configuration of the Ares I-X RBM.  
As the model is pitched above 1 degree (positive and 
negative), the alternating flow tends to move to the 
windward side of the model (180 degree azimuth for a 
positive pitch, 0 degree azimuth for negative pitch.)  There 
is an asymmetry present in the cross-correlation dependant 
on positive or negative model pitch.  The source of this 
asymmetry is unknown; several possible causes exist 
including model eccentricity, the non-removable LAS 
raceway protuberance, and tunnel flow angularity.  
 The effect of protuberances on pressure time history 
cross-correlation as a function of positive model pitch 
angles was examined by comparing Figures 15(b-f) and 
13(b-f).  The largest changes in cross-correlation occur at 1 
and 2 degrees pitch angles.  At 1 degree model pitch angle 
a region of alternating flow centered at 315 degrees for the 
protuberance on configuration shifts to the windward side 
of the model (225-270 degrees) for the protuberance off 
configuration and at 2 degrees model pitch this region of 
alternating flow disappears altogether for the protuberance 
off configuration.  At model pitch angles of 4 and 6 
degrees, a region of correlated flow at 225-270 degree 
azimuth is present again, but an examination of the time 
histories and their histograms indicates the high cross-
correlation is caused by a terminal shock, not alternating 
flow.   
 Flow cross-correlation at negative model pitch angles is 
significantly affected by the presence of protuberances.  
Figures 15(g-k) indicate that a large, correlated alternating 
flow region occurs on the windward side of the 
protuberance off model.  This region is not present when 
protuberance are installed (See Figures13(g-k)).  This 
difference is more than likely cause by the presence of the 
large CM-SM umbilical protuberance on the windward 
side of the model. 

Figure 16 presents a color intensity plot of the Cp,rms 
values for measured pressure time histories as a function of 
model pitch angle and azimuthal station for the 
protuberance off configuration of the Ares I-X RBM.  At 
positive pitch angles, the transducer at azimuth angle 135 
degrees measures large Cp,rms values while for negative 
pitch angles, the transducer at 0 degree azimuth angle 
measures large Cp,rms values.  Both of these transducers 
are measuring pressure fluctuations caused by alternating 
flow.  One would expect the location of the alternating 
flow to be symmetric (0 and 180 degrees) as the model is 
pitched in the positive and negative direction. The cause of 
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Figure 16.  Measured Cp,rms as a function of model 

pitch angle and transducer azimuthal location, M=0.9, 
roll = 0°, protuberances off. 
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this asymmetry is unknown. 
 The differences between Figures 13 and 15, 
particularly on the 0 degree azimuth side of the 
model indicate that the presence of protuberances 
plays a significant role in the flow dynamics at the 
CM-SM junction.  The earlier discussion of Figure 9 
concluded that the two regions of alternating flow 
tend to be 180 degrees out of phase with respect to 
each other with the boundary between the two 
regions occurring at the CM-SM umbilical.  The 
impact of the CM-SM umbilical on the location of 
the alternating flow regions is further investigated in 
Figure 17.  This figure presents the maximum cross-
correlation of pressures polar plots for four model 
attitudes, where the pitch angle was held at 0 degrees 
and the model was rolled.  The regions of high 
pressure cross-correlation generally do not move 
around the model circumference as a function of 
model roll angle, particularly the region ranging from 
225 to 0 degrees azimuth.  This observation suggests 
that the boundary of at least one of the regions of 
alternating flow may be fixed azimuthally in the 0 – 45 degree region by the large the CM-SM umbilical 
protuberance.  Unfortunately, this observation could not be substantiated due to the lack of similar data for the 
protuberance off model configuration. 

 
 
C.  Downstream Effects of Alternating Flow  
 Figure 18 presents pressure time histories measured by transducers downstream of the CM-SM junction located 
at a single model azimuth (0 degrees), at a model attitude of 0 degrees pitch and roll.  The extent of downstream 
influence of alternating flow is visible in this figure.  An alternating flow event was measured at approximately 19.7 
seconds.  The event is present in the pressures measured at stations 1 through 6, spanning a distance of 
approximately 1.3 model diameters downstream of the expansion corner.  An examination of pressure time histories 
at model pitch angles ranging from -8 to +8 degrees (not presented) indicates that for most model pitch angles, the 
impact of alternating flow was detected by the first 6 transducers downstream of the expansion corner.  Since the 
next transducer, station 7, was 1.7 model diameters downstream from the expansion corner, it impossible to 
ascertain from this data a more accurate extent of downstream influence of alternating flow. 
 The pressure time histories in Figure 18 indicate that the measured pressure changes due to alternating flow act 
differently depending on longitudinal model station.  Comparing stations 1 and 3, alternating flow results in an 
increase in static pressure at station 1, and a decrease at station 3.  This trend in the alternating flow pressure change 
as a function of model station was also observed by Chevalier and Robertson1.  These changes in pressure are 
directly related to the static pressures for an attached supersonic flow and a separated subsonic flow.   
 Figure 19a presents the static pressures for transducers 1 through 8 at Mach numbers 0.88 and 0.92, bounding 
Mach conditions at which the flow at the CM-SM junction remains either a separated, subsonic flow or an attached, 
supersonic flow, respectively.  The locations of the transducers on the Ares I-X outer mold line is presented in 
Figure 19c.  The attached flow static pressures at transducers 1 and 2 are lower than the corresponding separated 
flow static pressures, but for transducers 3 through 5, the separated flow static pressure is lower.  The relative 

 
(a) roll=0°  (b) roll=90°  (c) roll=180°  (d) roll=270° 

Figure 17.  Maximum cross-correlation of pressures as a function of model roll angle, M=0.9, pitch = 0°, 
protuberances on. 
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Figure 18.  Pressure time histories measured 
downstream of CM-SM junction at 0 degree 

azimuth, M=0.9, pitch=0°, roll=0°, 
protuberance on. 
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pressure magnitudes reverse again at transducer 6, which is not 
noted by Chevalier and Robertson, and most likely influenced 
by the vicinity of another expansion corner located just aft of 
transducer 6.   
 Figure 19b compares the differences between the static 
pressures at Mach 0.88 (separated) and 0.92 (attached) to the 
difference between the Mach 0.9 static pressures in the attached 
and separated flow states.  Except at transducer 2, the 
corresponding differences compare well, raising the possibility 
that wind tunnel data from Mach numbers just below and just 
above the alternating flow Mach number may be used to 
accurately predict and bound the overall magnitude of loads 
produced by this phenomenon. 

 
 

V.  Flight Test Buffet Forcing Functions 
 
A.  Modeling of Alternating Flow  
 The alternating flow phenomenon created a unique challenge in the analysis of the Ares I-X buffet loads.  The 
large abrupt pressure changes, when integrated over the surface of the vehicle, produce extremely large fluctuations 
in the BFFs.  Data from the two wind tunnel investigations of transonic buffet are long time records of unsteady 
pressures acquired at constant Mach numbers.  This constant Mach condition is not representative of a launch 
velocity profile, where a vehicle is continuously accelerating.  Keeping the velocity constant provides the flow with 
the opportunity to indefinitely switch back and forth between the separated and attached flow states.  The multiple, 
square-wave-like changes in the surface pressures, when integrated, produce a series of impulsive loads presented in 
Figure 20a.  These multiple impulsive loads result in unrealistically high buffet loads.  The short duration that the 
launch vehicle spends in the critical Mach range conducive to alternating flow suggests that, most likely, only a 
single change in flow states may occur4.  Therefore, a method of modeling a single alternating flow event in the 
buffet forcing functions was developed. 
 Based on the assumption that only a single impulse would occur, a procedure was developed to model this single 
impulse using wind tunnel data.  The procedure uses the integrated point loads instead of individual pressure time 
histories.  First, a low-pass filter is applied to the point load time histories at stations affected by alternating flow.  
Next, the largest impulsive load created by alternating flow is identified based on the root-mean-square value of a 
fixed length window propagated across the entire filtered time history.  In order to increase the conservatism of the 
analysis, the window size was chosen to excite the vehicle first bending mode.   

Once the largest impulsive load event is identified, the point load time histories for all the vehicle stations 
affected by alternating flow are low-pass filtered and all other impulsive load events in the time histories are 
removed.  These filtered time histories containing only that single event are superimposed on the point load time 

 
Figure 19.  Relationship between static pressures at M=0.88 

and 0.92 and the alternating flow pressure amplitude at 
M=0.9, pitch=0°, roll=0°, protuberance on. 
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Figure 21.  Comparison of integrated loads for 

wind tunnel prediction and flight test. 
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(b) Flight test data

histories obtained at Mach conditions just above and below the critical Mach number resulting in point load time 
histories such as the one presented in Figure 20b.  These two Mach numbers exhibit either pure subsonic, separated 
flow or supersonic, attached flow characteristics.  This “book ending” of the alternating flow critical Mach number 
is employed to examine the effect of unsteady subsonic separated and supersonic attached flow signal content on 
vehicle buffet response during the transition between the two flow states.   

 
 
B.  Ares I-X Flight Data Comparison 
 Figure 21 presents the magnitude and direction of the integrated load time histories produced by the change from 
subsonic to supersonic flow based on (a) wind tunnel predictions (=1° and =0°) and (b) Ares I-X flight test 
measurements (=0.2° and =-0.9°).  The direction of the load is calculated using the raw point force time histories 
(presented in blue).  For clarity, low-pass filtered point force time histories were also used to reduce noise in the 
load direction time history (presented in green).  A comparison of the magnitudes of the wind-tunnel predicted and 
flight test loads indicates that the wind tunnel data overpredicted the magnitude of the load by approximately 200 
percent.  The duration of the flight test event (highlighted in yellow) was approximately one fourth of the wind-
tunnel predicted duration and the direction of the impulsive load was also not predicted correctly.  The wind tunnel 
data indicated that the change in flow states should result in a loading directed at approximately 60 degrees azimuth.  
The flight test data indicates that the load initially is applied in the -150 degrees azimuth direction and changes 
direction to 60 degrees azimuth. 

The direction and magnitude of the load produced during the transition from separated subsonic flow to attached 
supersonic flow is a function of the asymmetry of the flow transition around the vehicle circumference.  For 
example, the largest load possible would occur if a 
continuous 180 degree arc section of the circumference 
changes flow states simultaneously from subsonic to 
supersonic, with the other half following later.  The load 
direction would be a function of which section of the 
circumference transitioned first.  The duration of the net 
load is governed by how long it takes the flow at the 
expansion corner to fully transition to supersonic attached 
flow around the entire vehicle circumference. 
 The transition from subsonic separated flow to 
supersonic attached flow downsteam of a cone-cylinder 
expansion corner is dependent on the local flow field.  The 
flow field is influenced by factors such as vehicle geometry 
(protuberances, elastic deformation, etc.), vehicle attitude, 
atmospheric conditions, and the flight trajectory.  The wind 
tunnel data derived impulsive load was based on a worst 
case scenario, which was measured at =1° and =0°.  The 
best estimated trajectory of the Ares I-X FTV at the time of the impulsive load was approximately =0.2° and       
=-0.9°.  This difference in vehicle attitude with respect to the free stream velocity may, in part, explain the 
differences noted in Figure 21.   

 
     Time      Time 

(a) Unfiltered, multiple event   (b) Filtered, single event 
Figure 20.  Buffet forcing functions just aft of the expansion corner, M=0.9, pitch=1°, roll=0°, protuberance 

on. 
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Figure 22.  Integrated loads for wind tunnel data for 

model attitude of M=0.9, =-0.52°, =-1.93° (pitch 
=2°, roll=-75°.) 
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 The influence of vehicle attitude on the impulsive load was assessed by examining a buffet forcing function 
developed using wind tunnel data closest to the flight test - combination.  Figure 22 presents the impulsive load 
generated by an alternating flow event based on a wind tunnel data measured at M=0.9, =0.52, and =-1.92.  The 
magnitude of the new impulsive load is approximately twice that of the flight test load.  The direction of the 
impulsive load was constant at -160 degrees for the duration of the entire event, instead of starting at 180 degrees 
and moving to 60 degrees as measured during the flight test.  This difference in direction of the load is expected 
because of the flight test vehicle is accelerating while the wind tunnel model was tested at steady flight conditions.   
 The wind tunnel data derived event is created by a 
phenomenon where the flow over a portion of the vehicle 
circumference at the expansion corner changes states from 
subsonic detached state to a supersonic attached state, 
creating a net load at this vehicle station.  Eventually the 
flow transitions back to the subsonic state returning the 
local vehicle loads back to equilibrium at a subsonic 
condition.  The flight test vehicle measured event is 
created by the flow over a portion of the vehicle 
circumference changing states from subsonic flow to 
supersonic flow, but due to vehicle acceleration, the 
remainder of the vehicle circumference transitions to a supersonic flow state thereby returning the local vehicle 
loads back to equilibrium but at a supersonic condition.   
 The duration of the impulsive load event was also overpredicted.  Both predictions (Figures 21a and 22) seemed 
to overpredict the duration of the impulsive load by approximately 300 percent.  This overprediction of the load 
duration is caused by the window size (based on vehicle first bending mode frequency) used to identify the most 
conservative alternating flow event.  If this load duration was proven to result in significant overconservatism, then 
limiting the maximum duration of candidate events based on vehicle trajectory and refinements in wind tunnel data 
may be considered.  The later refinement would require adjusting the wind tunnel test matrix once the presence of 
alternating flow is noted to provide a finer resolution of Mach numbers in the vicinity of the alternating flow flight 
condition in order more precisely identify the flight range affected by alternating flow.   
 

IV.  Conclusions 
 
Wind tunnel tests of Ares I-X and Ares I rigid buffet models were conducted to develop transonic buffet forcing 
functions for the Ares I-X and Ares I launch vehicles.  During the testing of the Ares I-X model, an alternating flow 
phenomenon was identified.  The large transducer density in the vehicle region affected by this phenomenon, and 
the range of flight conditions and model configurations tested, provided a unique opportunity to study this 
phenomenon.  The analysis of the Ares I and Ares I-X rigid buffet test data indicates: 
 
1.  Pressure time history Cp,rms values, histograms, and cross-correlation plots are useful tools to help identify 
alternating flow separation and attachment phenomenon during wind tunnel testing and post-test analysis. 
2.  For the Ares I-X configuration, an alternating flow separation and attachment event occurred at the Crew 
Module-Service Module (CM-SM) junction for Mach numbers ranging from 0.88 to 0.92, depending on model 
angle of attack.   
3.  The Ares I model did not experience this phenomenon due to the presence of the ogive fairing around the Crew 
and Service Modules. 
4.  For the Ares I-X configuration, alternating flow is most prevalent at smaller (≤ 2°) model pitch angles.  At these 
pitch angles, alternating flow was more organized, simultaneously affecting multiple transducers around the 
circumference. 
5.  Vehicle protuberances, especially the CM-SM umbilical, affect the magnitude and orientation of the impulsive 
loads created by alternating flow.   
6.  Flight data indicates that only a single impulsive load occurred as the flow at the CM-SM junction transitioned 
from a subsonic separated flow to a supersonic attached flow.  Wind tunnel data overpredicted the magnitude and 
duration of this impulsive load. 
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