3,554 research outputs found

    Hot pressing of nanocrystalline TiO2 (anatase) ceramics with controlled microstructure

    Get PDF
    The preparation conditions of nanocrystalline phase-pure TiO2 anatase ceramics by hot pressing are described. Density, surface area, pore size distribution and grain size are determined by various techniques, including gas adsorption, mercury porosimetry, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The evolution of the structural parameters is followed as function of temperature and pressure programme. It is shown that the porosity, grain and pore size of the ceramics can be controlled by a suitable choice of experimental conditions. Ceramics with densities higher than 90% of the theoretical limit with a mean grain size of 30 nm can be obtained at temperatures as low as 490 ◦C under 0.45 GPa for 2 h. The experimental results are discussed in view of the sintering theory

    Models of protein production along the cell cycle: an investigation of possible sources of noise

    Full text link
    In this article, we quantitatively study, through stochastic models, the efects of several intracellular phenomena, such as cell volume growth, cell division, gene replication as well as fuctuations of available RNA polymerases and ribosomes. These phenomena are indeed rarely considered in classic models of protein production and no relative quantitative comparison among them has been performed. The parameters for a large and representative class of proteins are determined using experimental measures. The main important and surprising conclusion of our study is to show that despite the signifcant fuctuations of free RNA polymerases and free ribosomes, they bring little variability to protein production contrary to what has been previously proposed in the literature. After verifying the robustness of this quite counter-intuitive result, we discuss its possible origin from a theoretical view, and interpret it as the result of a mean-feld efect

    Electrical properties and defect chemistry of anatase (TiO2)

    Get PDF
    The electrical properties of pure Anatase are investigated by impedance spectroscopy as function of temperature and oxygen partial pressure. The experimental results are fully interpreted by point defect chemistry. A transition from predominant Schottky to Frenkel cation disorder is observed when the temperature increases and/or the oxygen partial pressure decreases. The reduction enthalpies are near those obtained for Rutile in previous studies

    Thermal convection in Earth's inner core with phase change at its boundary

    Full text link
    Inner core translation, with solidification on one hemisphere and melting on the other, provides a promising basis for understanding the hemispherical dichotomy of the inner core, as well as the anomalous stable layer observed at the base of the outer core - the F-layer - which might be sustained by continuous melting of inner core material. In this paper, we study in details the dynamics of inner core thermal convection when dynamically induced melting and freezing of the inner core boundary (ICB) are taken into account. If the inner core is unstably stratified, linear stability analysis and numerical simulations consistently show that the translation mode dominates only if the viscosity η\eta is large enough, with a critical viscosity value, of order 310183 10^{18} Pas, depending on the ability of outer core convection to supply or remove the latent heat of melting or solidification. If η\eta is smaller, the dynamical effect of melting and freezing is small. Convection takes a more classical form, with a one-cell axisymmetric mode at the onset and chaotic plume convection at large Rayleigh number. [...] Thermal convection requires that a superadiabatic temperature profile is maintained in the inner core, which depends on a competition between extraction of the inner core internal heat by conduction and cooling at the ICB. Inner core thermal convection appears very likely with the low thermal conductivity value proposed by Stacey & Davis (2007), but nearly impossible with the much higher thermal conductivity recently put forward. We argue however that the formation of an iron-rich layer above the ICB may have a positive feedback on inner core convection: it implies that the inner core crystallized from an increasingly iron-rich liquid, resulting in an unstable compositional stratification which could drive inner core convection, perhaps even if the inner core is subadiabatic.Comment: 25 pages, 12 figure

    A Stochastic Analysis of Autoregulation of Gene Expression

    Full text link
    This paper analyzes, in the context of a prokaryotic cell, the stochastic variability of the number of proteins when there is a control of gene expression by an autoregulation scheme. The goal of this work is to estimate the efficiency of the regulation to limit the fluctuations of the number of copies of a given protein. The autoregulation considered in this paper relies mainly on a negative feedback: the proteins are repressors of their own gene expression. The efficiency of a production process without feedback control is compared to a production process with an autoregulation of the gene expression assuming that both of them produce the same average number of proteins. The main characteristic used for the comparison is the standard deviation of the number of proteins at equilibrium. With a Markovian representation and a simple model of repression, we prove that, under a scaling regime, the repression mechanism follows a Hill repression scheme with an hyperbolic control. An explicit asymptotic expression of the variance of the number of proteins under this regulation mechanism is obtained. Simulations are used to study other aspects of autoregulation such as the rate of convergence to equilibrium of the production process and the case where the control of the production process of proteins is achieved via the inhibition of mRNAs

    Approximation Algorithms for Energy Minimization in Cloud Service Allocation under Reliability Constraints

    Get PDF
    We consider allocation problems that arise in the context of service allocation in Clouds. More specifically, we assume on the one part that each computing resource is associated to a capacity constraint, that can be chosen using Dynamic Voltage and Frequency Scaling (DVFS) method, and to a probability of failure. On the other hand, we assume that the service runs as a set of independent instances of identical Virtual Machines. Moreover, there exists a Service Level Agreement (SLA) between the Cloud provider and the client that can be expressed as follows: the client comes with a minimal number of service instances which must be alive at the end of the day, and the Cloud provider offers a list of pairs (price,compensation), this compensation being paid by the Cloud provider if it fails to keep alive the required number of services. On the Cloud provider side, each pair corresponds actually to a guaranteed success probability of fulfilling the constraint on the minimal number of instances. In this context, given a minimal number of instances and a probability of success, the question for the Cloud provider is to find the number of necessary resources, their clock frequency and an allocation of the instances (possibly using replication) onto machines. This solution should satisfy all types of constraints during a given time period while minimizing the energy consumption of used resources. We consider two energy consumption models based on DVFS techniques, where the clock frequency of physical resources can be changed. For each allocation problem and each energy model, we prove deterministic approximation ratios on the consumed energy for algorithms that provide guaranteed probability failures, as well as an efficient heuristic, whose energy ratio is not guaranteed

    Heteroatom-Substituted Radicals: 1,2-Asymmetric Induction

    Get PDF
    Radical reactions became during the last decade a very useful tool in organic synthesis. Spectacular progress has been made in the control of the stereoselectivity of these reactions. This contribution presents our recent results with 1- and 2-heteroatom substituted radicals in cyclic and acyclic systems. Several examples dealing with the use of Lewis acids to achieve high stereochemical control are presented

    Stereoselectivity Control of Free-Radical Reactions Using Lewis Acids

    Get PDF

    Introduction to the COST Symposium

    Get PDF

    Simulations of propelling and energy harvesting articulated bodies via vortex particle-mesh methods

    Full text link
    The emergence and understanding of new design paradigms that exploit flow induced mechanical instabilities for propulsion or energy harvesting demands robust and accurate flow structure interaction numerical models. In this context, we develop a novel two dimensional algorithm that combines a Vortex Particle-Mesh (VPM) method and a Multi-Body System (MBS) solver for the simulation of passive and actuated structures in fluids. The hydrodynamic forces and torques are recovered through an innovative approach which crucially complements and extends the projection and penalization approach of Coquerelle et al. and Gazzola et al. The resulting method avoids time consuming computation of the stresses at the wall to recover the force distribution on the surface of complex deforming shapes. This feature distinguishes the proposed approach from other VPM formulations. The methodology was verified against a number of benchmark results ranging from the sedimentation of a 2D cylinder to a passive three segmented structure in the wake of a cylinder. We then showcase the capabilities of this method through the study of an energy harvesting structure where the stocking process is modeled by the use of damping elements
    corecore