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 Abstract  

The electrical properties of pure Anatase are investigated by impedance spectroscopy as 

function of temperature and oxygen partial pressure. The experimental results are fully 

interpreted by point defect chemistry. A transition from predominant Schottky to Frenkel 

cation disorder is observed when the temperature increases and/or the oxygen partial pressure 

decreases. The reduction enthalpies are near those obtained for Rutile in previous studies.  
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1. Introduction 

Titanium dioxide TiO2 is one of the most important binary oxides for technological 

applications. Besides its well-known use as ubiquitous white pigment, it is also currently 

under investigation for high added-value environmental applications, including photocatalysis 

[1] and photoelectrochemical cells [2]. Photo-activity of TiO2 is strongly correlated to the 

structure and microstructure of the powder. Titanium dioxide can present several crystalline 

structures: the most important are Rutile, Anatase and Brookite. Whereas the Rutile phase is 

clearly the thermodynamically stable one at high temperature, Anatase and Brookite can be 

obtained at reduced temperature; their metastability is strongly correlated to the surface 

composition of the oxide, and, thus, to the preparation conditions. For example, the so-called 

“sulphate route” is known to stabilize the Anatase phase, whereas the “chloride route” is more 

favourable for the formation of Rutile [3]. Moreover, particle size can have a strong impact on 

thermodynamic stability of the TiO2 polymorphs; according to Ranade et al. [4], Anatase and 

Brookite, which have lower surface enthalpies than Rutile, are stable at small particle size. 

The electrical properties of titanium dioxide were mostly investigated for the Rutile 

modification as single crystals [5], [6], [7] and [8], microcrystalline materials [9], [10] and 

[11] at high temperature and, more recently, in nanocrystalline form [12]. At low oxygen 

partial pressures P(O2), Rutile shows generally n-type electronic conductivity, due to a large 

oxygen deficiency (TiO2−x: x ≈ 10−3 at T = 800 °C and P = 10− 16 Pa [10]). Rutile can be 

readily doped and p-type or mixed ionic–electronic conduction have been reported 

occasionally in the high P(O2) domain [13], but discrepancies remain concerning the ionic 

contribution and the literature results are controversial. Baumard and Tani [14] determined an 

ionic transference number of only 10− 3 at 1000 °C. At 1000 °C and P(O2) = 105 Pa, 

Carpentier et al. [15] found an ionic transference number below 0.05 and Cronemeyer [16], a 

negligible ionic contribution. In contrary, Nowotny et al. [5] measured between 700 and 1100 

°C in an oxygen partial pressure range 1–105 Pa an ionic transference number of 0.5 with an 

activation energy of 1.6 eV for the ionic conductivity. Popov et al. [17] reported ionic 

conduction below 1000 °C with an activation energy between 0.55 and 0.75 eV along c axis 

and 2 eV along a axis. Finally, Singheiser and Auer [18] estimated that ionic conduction plays 

an important role even in reduced TiO2 (10− 14–10− 19 Pa) between 900 and 1000 °C, but did 

not give numbers.  



Fundamental studies on the electrical properties of the Anatase modification are seldom, 

given that ceramic preparation and long-time measurements at elevated temperature generally 

lead to a grain growth and a partial phase transition into rutile. Knauth and Tuller studied the 

electrical properties of dense nanocrystalline Anatase as function of temperature and oxygen 

partial pressure [19]. Porous Anatase ceramics were investigated by Azad et al. [20] in view 

of gas (CO and H2) sensor applications. Studies of dense nanocrystalline ceramics were also 

performed by Bhowmik et al. [21], but here the material was a two-phase Anatase–Rutile 

mixture. Finally, an influence of humidity was shown [22]. To make a long story short: there 

is a clear interest in electrical properties of Anatase, but experimental problems are numerous 

and therefore the literature data are rare and partly controversial.  

This study reports ac electrical measurements of dense, phase-pure Anatase ceramics over the 

largest oxygen partial pressure range ever investigated. In order to succeed, a certain number 

of difficult problems had to be solved. First, dense phase-pure Anatase ceramics had to be 

processed from nanometric precursor powders; this is not possible by conventional high 

temperature sintering. Second, the electrical measurements had to be made at relatively low 

temperatures in order to keep the Anatase structure and avoid grain growth. These 

experiments demanded to optimize the usual procedure in order to cope with the difficult 

equilibration of the oxide with the surrounding gas phase at reduced temperature.  

2. Experimental 

2.1. Anatase powders 

The Anatase powders were prepared by the sulfate route [23]. In this process, the mineral 

precursor was dissolved in sulfuric acid and the titanium sulfate solution then hydrolyzed by 

heating to 95–110 °C. The hydrolysis product was filtered and the filtrate thoroughly washed 

until neutral pH was obtained. It was then calcined under air for 1 h at a temperature between 

300 and 1100 °C to obtain a well-defined particle size distribution; phase-pure samples 

calcined at 800 °C with a grain size of (70 ± 35) nm were used in the following [24]. The 

obtained powders were chemically analyzed by gravimetric techniques and ICP emission 

analysis. The concentrations of various impurities are given in Table 1 (total impurity 

content ≈ 0.25 mol%).  

Table 1.  



Impurity content (ppm) in anatase precursor powders (Gravimetric and ICP analysis)  

Element Concentration/ppm 

 ICP Gravimetry 

Na 930 1200–1300 

Si 200 385 

S 410 270 

Other: P 270, Zr 175, Nb 68, Mg 21, Al 13, V 9, Fe 8, Pb 5, Ba 4, Cr 3, Zn 3, Cu 2, Ni, 
Co, Mn < 1 

 

2.2. Ceramic processing 

Nanocrystalline Anatase ceramics were made by hot-pressing the powders calcined at 800 °C. 

In this procedure, the powder was introduced in pure alumina dies, cold compacted at 0.2 GPa 

and then uniaxially compressed under 0.44 GPa and subjected to a fixed heating rate of 5 

°C/min up to a plateau temperature of 585 °C, where it was kept for 2 h, before releasing 

pressure and cooling with the intrinsic cooling rate of the hot-press (Cyberstar, Grenoble). 

The density of the nanocrystalline ceramics was determined from mass and geometrical 

dimensions. Densities of (91 ± 2)% of theory, based on the density of pure Anatase, were 

obtained under these conditions [25]. Microstructure and grain size of ceramics were 

determined both by Scanning Electron Microscopy (SEM) and Transmission Electron 

Microscopy (TEM) micrograph analysis. SEM experiments (Philips XL30 SFEG) were 

carried out on a chip of ceramic in secondary electron mode at 10–15 kV acceleration voltage. 

TEM experiments (JEOL 2010 F) were realized at 200 kV on a 15 × 5 × 0.1 µm thin blade 

obtained by Focused Ion Beam (Philips FIB 200) cutting (CP2M, Marseille). Finally, the 

samples were investigated by X-ray diffraction (Siemens D 5000) to check the absence of 

Rutile phase after hot-pressing and again after conductivity measurements.  

2.3. Oxygen pump-sensor 

The experimental set-up, schematically shown in Fig. 1, was described previously [26]. 

Briefly, it contains 4 high purity gas bottles (Ar, O2, CO2 and 10% H2 in Ar from Air Liquide, 

France), which are connected to mass flowmeters to control gas mixtures and flux. Then, gas 

mixtures are led through the electrochemical oxygen pump (held at 900 °C), the 

potentiometric oxygen sensor and finally reach the experimental cell described by Steil [27] 

where the ceramics are equilibrated with the gas. The oxygen sensor and the ceramics are 



maintained at the same temperature to measure the real oxygen partial pressure in contact 

with the sample especially at low temperature.  

Fig. 1. Oxygen pump-sensor cell.  

 

 

 

Different oxygen partial pressure domains can be accessed depending on the initial gas 

mixture and temperature used [28]. Between 450 and 700 °C, oxygen partial pressures 

between 5 10− 9– 5 10− 19 Pa can be obtained by reduction of CO2 following the reaction: 

 
CO2 = CO + 1 / 2 O2. (1) 

The standard free enthalpy of (1) is: ∆G°(T) = 283.328 − 0.08753 T (/ kJ mol− 1) [28]. 

However, according to Ellingham diagrams, strong reduction of CO2 into CO at these 



temperatures can lead to parasitic CO reduction into carbon, following the Boudouard 

reaction: 

 
2 CO = C(s) + CO2. (2) 

The absence of carbon was periodically checked in our experiments.  

In the same temperature range, the lowest P(O2) domain, 10− 15– 10− 25 Pa, is accessible by 

hydrogen oxidation: 

 
H2 + 1 / 2 O2 = H2O. (3) 

The standard free enthalpy of reaction (3) is: ∆G°(T) = − 247.657 + 0.0552 T (/ kJ mol− 1) 

[28].  

Finally, the high P(O2) range (105– 10−1 Pa) is obtained starting from oxygen–argon mixtures.  

The measurement temperature was below 700 °C in order to keep the Anatase structure and to 

avoid grain growth.  

Measurement campaigns were always realized from oxidizing to reducing conditions, starting 

with pure oxygen (P(O2) = 105 Pa) and going to the most reducing H2/H2O mixture 

(P(O2) ≈ 10− 24 Pa). Reproducibility was checked after a complete run at maximum 

temperature (700 °C) to confirm the absence of major sample modifications, by grain growth 

or phase transition.  

2.4. Impedance spectroscopy 

Impedance measurements were made at open circuit potential in a frequency domain between 

10− 1 and 3 × 107 Hz using a frequency response analyzer Solartron SI 1260. Three samples 

could be studied at the same time. Reproducibility of our results was checked on two pellets. 

The signal amplitude was optimized in each experiment in order to maintain a linear response 

with the best quality spectrum. Sputtered gold or platinum electrodes with approximate 

thickness 200 nm were used to analyze the electrode reaction, but they gave comparable 

results at high P(O2). The signal stabilization after change of oxygen partial pressure took 

between 2 and 5 h.  



3. Results 

Two characteristic micrographs of Anatase ceramics are presented in Fig. 2a (SEM) and 2b 

(TEM). The observation of particles larger than 100 nm in the last case is unlikely due to the 

low probability of cutting the big particles in the center. The image analysis shows an average 

grain size and a grain size distribution similar to that of the precursor powder (Fig. 2c) of 

about (70 ± 35) nm [24]. The crystalline growth is negligible during hot-pressing, because the 

sintering temperature (585 °C) was below the calcination temperature of the initial powder 

(800 °C). The residual porosity is confirmed to be low and the pore size seems to be inferior 

to 5 nm (Fig. 2b). The high resolution micrograph shown in Fig. 2d and centred on grain 

interfaces, is characteristic of grain boundaries without precipitated crystalline or vitreous 

phases, which is confirmed by the zoom (Fig. 2e) of Fig. 2d. Fig. 3 presents the corresponding 

X-ray diffraction pattern for the powder precursor (a) and the ceramic after 700 °C electrical 

measurements (b): there are no peaks corresponding to the Rutile phase but the peaks appear 

slightly thinner indicating a very small increase of grain size.  

 

 

 

 

 

 

 

 

 

 

 



Fig. 2. (a) is the SEM micrograph and (b) is the TEM micrograph of dense anatase ceramic, 

(c) TEM micrograph of precursor powder calcined at 800 °C for 1 h, (d) High Resolution 

micrograph centred on grain interfaces and (e) Zoom (white square) of (d).  

 

 

 

 

 

 

 

 



Fig. 3. X-ray diffraction patterns of a) starting powder calcined at 800 °C for 1 h and b) a 

dense phase-pure anatase ceramic obtained. The dashed lines represent the most intense 

diffraction lines of the rutile phase.  

 

Typical impedance diagrams of Anatase ceramics are shown in Nyquist representation at high 

P(O2) = 105 Pa as function of temperature in Fig. 4a–b and at 701 °C as function of P(O2) in 

Fig. 4c–d. Under pure oxygen, one notices at high frequencies a depressed arc followed by a 

not well-defined arc at low frequencies. This last contribution attributable to electrode 

reaction progressively decreases as the temperature increases and it disappears when the 

oxygen partial pressure decreases, i. e. below 100 Pa of O2. Furthermore, sputtered platinum 

or gold electrodes gave similar results. This indicates that the Anatase ceramics are mostly 

electronic conducting with a negligible ionic conductivity at high oxygen partial pressure and 

low temperature. Coming back to the material response, at high P(O2), the observed depressed 

arc at high frequency can be interpreted with the classical series circuit of two parallel 

resistance-constant phase elements (CPE). At P(O2) below 1 Pa, the circuit can be simplified 

using only one parallel resistance-constant phase elements (CPE) and at P(O2) below 10− 18 Pa 

(at 501 °C) or below 10− 8 Pa (at 701 °C) a simple inductance in series with a resistance is 

used (Fig. 4e). The inductive element at high frequency is representative of the electrical 

connections. These spectra clearly indicate the electronic nature of the Anatase conductivity. 



To compare data over the entire P(O2) range, we use the total high frequency resistance for 

conductivity calculations.  

Fig. 4. Typical impedance diagrams in Nyquist representation of Anatase ceramics a) and b) 

at 105 Pa as a function of temperature, c) and d) at 701 °C as a function of P(O2) and e) the 

equivalent circuits used.  

 

The electrical conductivity of Anatase is plotted in a double-logarithmic plot versus oxygen 

partial pressure in Fig. 5. Over more than 30 decades of P(O2), one notices linear 

dependencies, but the pressure dependence is not identical and the slope is lower below 579 

°C (− 1 / 6) than above 650 °C (− 1 / 5). For example, at 579 and 701 °C, we determined by 

linear regression slope values of − 0.1631 and − 0.1957, very close to − 1 / 6 and − 1 / 5 and 

with very satisfactory correlation coefficients (0.9983 and 0.9988, respectively).  



Fig. 5. Oxygen partial pressure dependence of electrical conductivity for Anatase TiO2 

between 450 and 701 °C.  

 

The temperature dependence is shown in Arrhenius representation under different oxygen 

partial pressures in Fig. 6. A unique straight line is observed at high oxygen partial pressures, 

but a change of slope, reflecting an activation energy change, is evident under low P(O2) at a 

temperature above 600 °C. Moreover, the slope change in Fig. 6 is correlated to variation of 

slope in Fig. 5.  

 

 

 

 

 

 



Fig. 6. Arrhenius plot of electrical conductivity for Anatase TiO2 under oxygen partial 

pressures of 10− 15 and 105 Pa.  

 

 

 

4. Discussion 

The observed partial pressure and temperature dependencies indicate a change of defect 

reaction and can be nicely interpreted by point defect chemistry.  

4.1. Intrinsic ionic and electronic defect equilibria 

There are contradictions in literature on the disorder type in titanium dioxide, with reports of 

either Schottky or Frenkel cation type. The respective defect chemical reactions are written in 

Kröger nomenclature [29]:  



Schottky disorder: 

 
TiTi + 2 OO = VTi

4' +2 VO
2• + TiO2 (4) 

 
KS = [VTi

4'] [V O
2•}] = exp(− ∆ GS

0 / RT) (5) 

Frenkel cation disorder: 

 
TiTi + Vi = Tii

4• + VTi
4' (6) 

 
KF = [VTi

4'] [Ti i
4•] = exp(- ∆GF° / RT). (7) 

In the equilibrium constants KS and KF, the brackets represent the molar fractions of point 

defects and ∆G° is the standard free enthalpy of the corresponding defect reaction. Fully 

ionized defects can be assumed, because the ionization energies are relatively small in TiO2 

[9].  

The intrinsic formation of electronic defects can be written: 

 
0 = h• + e′ (8) 

 
Ke = p n = Nc Nv exp (− Eg / RT) (9) 

h• and e′ represent an electron hole and an excess electron with respective concentrations p 
and n; Nc and Nv are the density of states and Eg the band gap energy, which depends on 
particle size [30]. Reddy et al. reported for anatase structure an average value: Eg = (3.3 ± 0.1) 
eV [30].  

4.2. Extrinsic disorder: non-stoichiometry 

The reduction of TiO2 at low oxygen partial pressures can be described by different reactions, 

depending on the assumed predominant disorder type (Schottky or cation Frenkel). For 

predominant Schottky disorder, the reduction reaction involves formation of oxygen 

vacancies VO
2•: 

 
OO=VO

2• + 2 e′ + 1 / 2 O2(g) (10) 
 

KVo
2• = [VO

2•] n2 p(O2)
1 / 2 = exp(− ∆G°red VO

2• / RT) (11) 



∆G°red VO
2• is the standard Gibbs free enthalpy of reduction of TiO2 with formation of oxygen 

vacancies. Using Brouwer’s approximation for the electroneutrality condition, n = 2 [VO
2•], 

one obtains: 
 

n3 = 2 KVo
2• p(O2)

− 1 / 2 (12) 
 

n = 21 / 3 exp(− ∆G°red VO
2• / 3RT) p(O2)

−1 / 6. (13) 

For predominant Frenkel cation disorder, the reduction reaction involves titanium interstitials 

Ti i
4•. Only fully ionized titanium interstitials are considered, given the low ionization energies 

[31]: 

 
TiTi + 2 OO = Tii

4• + 4 e′ + O2 (g) (14) 
 

KTii
4• = [Ti i

4•] n4 p(O2) = exp(− ∆G°red Tii
4• / RT) (15) 

∆Gred° Tii
4• is the standard Gibbs free enthalpy of reduction with titanium interstitial 

formation. Using the Brouwer approximation, n = 4 [Tii
4•], one can write: 

 
n = 41 / 5 exp(− ∆G°red Tii

4• / 5RT) p(O2)
−1 / 5 (16) 

4.3. Conductivity data below 580 °C: σ α P(O2)
− 1 / 6 

The total conductivity of a solid can be written as the sum of electronic and ionic 

contributions: 

 
σ=F(µhp+µen+Σiµizi[i]) (17) 

µ is the charge carrier mobility. Under reducing conditions, the electronic conductivity is 
much larger and the other contributions can be neglected. In this domain, conductivity can be 
expressed using Eqs. (13) and (17) and the Gibbs–Helmholtz equation ∆G° = ∆H° − T ∆S°: 
 

 

(18) 

The observed slope of − 1 / 6 is characteristic of oxygen vacancy formation (Eq. (13)), 

showing that below 580 °C Schottky disorder is predominant in TiO2 Anatase. In this 

temperature domain (Fig. 6), the activation energy is (1.3 ± 0.1) eV. This value is near those 



obtained in air by Azad et al. [20] on porous Anatase ceramics and by Song et al. [11] on 

microcrystalline Rutile ceramics. The standard enthalpy of reduction can be calculated 

according to Eq. (18): ∆H°red VO
2• = (3.9 ± 0.3) eV. Kofstad [32] and Marucco et al. [10] 

determined for the Rutile phase: ∆H°red VO
2• = 4.6 − 5.0 eV. Our result is consistent with 

reduction of TiO2 at reduced temperature with oxygen vacancy formation. The reduction 

equilibrium constant KVO
2• can be obtained from the intercept (corresponding to P(O2) = 105 

Pa) of the straight line log σ vs. log (P(O2)) at constant temperature. The electron mobility is 

assumed to be independent of temperature above 300 K, as in the Rutile phase, and equal to 

0.1 cm2 V− 1 s− 1 [33]. This assumption is later justified by the similar electrical behaviour of 

the two phases. Using the experimental data reported in Fig. 5, we obtain at 557 °C: KVO
2• 

(557 °C) = 1.2 10− 30. The molar fraction of oxygen vacancies [VO
2•] can then be calculated at 

P(O2) = 105 Pa using Eq. (11) and the electroneutrality condition (n = 2 [VO
2•]). One obtains: 

[VO
2•] = (KVO

2• / 4)1 / 3 = 6.7 × 10− 11.  

4.4. Conductivity data above 650 °C: σ α P(O2)
− 1 / 5 

In this domain, the conductivity can be written using Eqs. (16) and (17): 

 

 

(19) 

The slope of − 1 / 5 is characteristic of titanium interstitial formation (Eq. (16)), indicating 

that at high temperature Frenkel cation disorder is predominant in Anatase. The activation 

energy determined from the Arrhenius plot (Fig. 6) at higher temperature is (2.2 ± 0.2) eV. 

Using Eq. (19), we can calculate the standard reduction enthalpy: ∆H°red Tii
4• = (11 ± 1) eV, 

consistent with literature data (∆H°red Tii
4• = 10.1 eV [10], [32]). A similar calculation as the 

previous one using Eq. (19) gives at P(O2) = 105 Pa, but higher temperature (T = 700 °C): 

KTii
4• (700 °C) = 8.0 × 10− 44. The molar fraction of titanium interstitials is obtained using Eq. 

(15): [Ti i
4•] = (KTii

4• / 44)1 / 5 = 7.9 × 10−10. However, these values were measured at much 

higher temperature on Rutile, where interstitial formation is observed only above 1100 °C and 



under 10− 1 Pa oxygen pressure. In the case of Anatase, this transition appears already around 

600 °C.  

The calculated oxygen deficiencies are small, because they correspond to high oxygen partial 

pressure (pure oxygen). Furthermore, the concentrations of titanium interstitials and oxygen 

vacancies are quite near and one can imagine that the predominance of one defect type over 

the other can be tuned by relatively small changes of experimental conditions. A change of 

majority point defect type is here observed from VO
2• at reduced temperature to Tii

4• at high 

temperature. The transition is observed between 600 and 620 °C under 10− 12 Pa. This 

behaviour was previously observed by Marucco et al. [10] for Rutile, but at a distinctly higher 

temperature, between 800 and 1100 °C, around 10− 12 Pa at 800 °C and around 10− 1 Pa at 

1100 °C. Very recent work by Lee and Yoo [34] on Rutile indicates also that Schottky and 

Frenkel defect concentrations are very near. The formation of titanium interstitials appears 

more favourable in Anatase in comparison to Rutile, because Anatase has a 10% lower 

density than Rutile and the crystal lattice is more open.  

Considering the two material reduction Eqs. (10) and (14), one can write: 

 

 

The calculation gives ∆H° = (3.2 ± 1.6) eV, this reaction is endothermic and according to the 

Le Chatelier’s principle, a temperature increase, as well as an increase of the oxygen vacancy 

concentration, are favourable to the formation of titanium interstitials. This result is in very 

good agreement with our experimental observations.  

Finally, the energy of formation of a point defect may be approximated in the Born model as 

z2e2/(εε0 rd) where z is the charge number, e the electronic charge, εε0 the permittivity of the 

solid and rd is the defect radius [35]. Considering only the charge numbers (i.e. ignoring the 

difference in radius between an oxygen vacancy VO
2• and a titanium interstitial Tii

4•), the 

energy of formation of an interstitial titanium is approximately four times that of an oxygen 

vacancy (z2 = 2 × 2 versus 4 × 4, respectively). This qualitative argument for an easier 

creation of oxygen vacancies is in good agreement with the experiment.  



5. Conclusion 

The electrical conductivity of dense Anatase TiO2 ceramics is investigated. The oxygen 

partial pressure and temperature dependence show clearly a change from predominant 

Schottky disorder at low temperature and high P(O2) to predominant cation Frenkel disorder 

at high temperature and low P(O2). Simple thermodynamic arguments for this observation are 

given.  
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