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Abstract—We consider allocation problems that arise in the
context of service allocation in Clouds. More specifically, we
assume on the one part that each computing resource is associated
with a capacity, that can be chosen using the Dynamic Voltage
and Frequency Scaling (DVFS) method, and with a probability of
failure. On the other hand, we assume that the services run as a
set of independent instances of identical Virtual Machines (VMs).
Moreover, there exists a Service Level Agreement (SLA) between
the Cloud provider and the client that can be expressed as follows:
the client comes with a minimal number of service instances that
must be alive at anytime, and the Cloud provider offers a list
of pairs (price, compensation), the compensation having to be
paid by the Cloud provider if it fails to keep alive the required
number of services. On the Cloud provider side, each pair actually
corresponds to a guaranteed reliability of fulfilling the constraint
on the minimal number of instances.

In this context, given a minimal number of instances and a
probability of success, the question for the Cloud provider is to
find the number of necessary resources, their clock frequency and
an allocation of the instances (possibly using replication) onto
machines. This solution should satisfy all types of constraints
(both capacity and reliability constraints). Moreover, it should
remain valid during a time period (with a given reliability in
presence of failures) while minimizing the energy consumption
of used resources. We assume in this paper that this time period,
that typically takes place between two redistributions, is fixed and
known in advance. We prove deterministic approximation ratios
on the consumed energy for algorithms that provide guaranteed
reliability and we provide an extensive set of simulations that
prove that homogeneous solutions are close to optimal.
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I. INTRODUCTION

A. Reliability and Energy Savings in Cloud Computing

This paper considers energy savings and reliability issues
that arise when allocating instances of an application consisting
in a set of independent services running as Virtual Machines
(VMs) onto Physical Machines (PMs) in a Cloud Computing
platform. Cloud Computing [1]–[4] has emerged as a well-
suited paradigm for service providing over the Internet. Using
virtualization, it is possible to run several Virtual Machines
on top of a given Physical Machine. Since each VM hosts
its complete software stack (Operating System, Middleware,
Application), it is moreover possible to migrate VMs from a
PM to another in order to dynamically balance the load.

In the static case, mapping VMs with heterogeneous
computing demands onto PMs with (possibly heterogeneous)
capacities can be modeled as a multi-dimensional bin-packing
problem. Indeed, in this context, each physical machine is char-
acterized by its computing capacity (i.e. the number of flops
it can process during one time-unit), its memory capacity (i.e.
the number of different VMs that it can handle simultaneously,
given that each VM comes with its complete software stack)
and its failure rate (i.e. the probability that the machine will
fail during the next time period) and each service comes with
its requirements, in terms of CPU and memory demands, and
reliability constraints.

In order to deal with capacity constraints in resource allo-
cation problems, several sophisticated techniques have been
developed in order to optimally allocate VMs onto PMs,
either to achieve good load balancing [5]–[7] or to minimize
energy consumption [8], [9]. Most of the works in this domain
have therefore concentrated on designing offline [10] and
online [11], [12] solutions of Bin Packing variants.

Reliability constraints have received much less attention in
the context of Cloud computing, as underlined by Walfredo
Cirne in [13]. Nevertheless, related questions have been ad-
dressed in the context of more distributed and less reliable sys-
tems such as Peer-to-Peer networks. In such systems, efficient
data sharing is complicated by erratic node failure, unreliable
network connectivity and limited bandwidth. Thus, data repli-
cation can be used to improve both availability and response
time and the question is to determine where to replicate data
in order to meet performance and availability requirements in
large-scale systems [14]–[18]. Reliability issues have also been
addressed by the High Performance Computing community.
Indeed, recently, a lot of efforts has been done to build
systems capable of reaching the Exaflop performance [19],
[20] and such exascale systems are expected to gather billions
of processing units, thus increasing the importance of fault
tolerance issues [21]. Solutions for fault tolerance in Exascale
systems are based on replication strategies [22] and rollback
recovery relying on checkpointing protocols [23], [24].

This work is a follow-up of [25], where the question of
how to evaluate the reliability of a general allocation has
been addressed and a set of deterministic and randomized
heuristics have been proposed. In this paper, we concentrate on
energy savings issues and we propose proved approximation



algorithms. In order to minimize energy consumption, we
assume that sophisticated mechanisms exist in order to fix the
clock frequency of the PMs, such as DVFS (see [26]–[30]).
In this context, the capacity of the PM can be expressed as
a function of the clock frequency. In general, the probability
of failure may itself depend on the clock frequency (see for
instance [31]); nevertheless, we did not find in the literature
a widely admitted model stating how clock frequency and
failures relate and we leave this issue for future works.

To assess precisely the specific complexity of energy min-
imization introduced by reliability constraints in the context
of services allocation in Clouds, we concentrate on a simple
context, that nevertheless captures the main difficulties. First,
we consider that the applications running on the Cloud plat-
form can be seen as a set of independent services, and that
the services themselves consist in a number of identical (in
terms of requirements) and independent instances. Therefore,
we do not consider the problems introduced by heterogene-
ity, that have already been considered (see for instance [6],
[7]). Indeed, as soon as heterogeneity is considered, basic
allocation problems are amenable to Bin Packing problem
and are therefore intrinsically difficult. Then, we consider
static allocation problems only, in the sense that our goal is
to find the allocation that optimizes the reliability during a
time period. This time period corresponds to the time period
between two phases of migrations and reconfiguration of the
allocation of VMs onto PMs. During this time period, the goal
for the provider is to ensure that a minimal number of instances
of each service is running whatever the machine failures. In
order to enforce reliability constraints, the provider will over-
provision resources by allocating and running more instances
than actually required by the services in order to cope with
failures. Combining these static and dynamic phases is out of
the scope of this paper. Therefore, our work enables to assess
precisely the complexity introduced by machine failures and
service reliability demands on energy minimization.

Throughout this paper, we assume that the characteristics of
the applications and their requirements (in terms of reliability
in particular) have been negotiated between a client and the
provider through a Service Level Agreement (SLA). In the
SLA, each service is characterized by its demand in terms of
processing capability (i.e. the minimal number of instances of
VMs that must be running simultaneously) and in terms of
reliability (i.e. the maximal probability so that the service will
not benefit from this number of instances at some point during
the next time period). Equivalently, the reliability requirement
may be negotiated through the payment of a fine by the Cloud
Provider if it fails to provide the required amount of resources.
In the case where it may be difficult for the user to a priori
decide the level of reliability, we discuss in Section V how
reliability can be proposed by the cloud provider as a list of
(price, compensation) pairs. In all cases, the goal, from the
provider point of view, is therefore to determine the cost of re-
liability, since a higher reliability will induce more replication
and therefore more energy consumption. Our goal in this paper
is to find allocations that minimize energy consumption while
enforcing reliability constraints, and therefore to determine the
price of reliability.

B. Notations

In this section, we introduce the notations that will be used
throughout the paper. Our target Cloud platform is made of m
physical machines M1,M2, . . . ,Mm. As already noted, we
assume that machine Mj is able to handle the execution of
CAPAj instances of services. We also assume that we can rely
on Dynamic Voltage Frequency Scaling (DVFS) mechanism
in order to adapt CAPAj . The energy consumed by machine
Mj when running at capacity (speed proportional to) CAPAj is
given by E = Estat(j)+Edyn(j), where Edyn(j) = ejCAPAαj .
This means that the energy consumed by machine Mj can be
seen as the sum of a leakage term (paid as soon as the machine
is switched on) and of a term that depends (most of the works
consider that 2 ≤ α ≤ 3) on its running speed. We assume in
addition continuous speeds, which means that any CAPAj can
be achieved by machine Mj (as advocated in [32]–[34]), so
that we can obtain readable and interesting results.

On this Cloud platform, our goal is to run (all through
a given time period, as defined in the SLA) n services
S1,S2, . . . ,Sn. DEMi identical and independent instances of
service Si are required, and the instances of the different
services run as Virtual Machines. Several instances of the
same service can therefore run concurrently and independently
on the same physical machine, even if it lowers the service
reliability. We will denote by Ai,j the number of instances of
Si running on Mj . Therefore,

∑
iAi,j represents the overall

number of instances running on Mj and therefore, it has to
be smaller than CAPAj . Respectively,

∑
j Ai,j represents the

overall number of running instances of Si. In general,
∑
j Ai,j

is larger than DEMi since replication, i.e. over-provisioning of
services, is used in order to enforce reliability constraints.

More precisely, each machineMj comes with a failure rate
FAILj , that represents the probability of failure of Mj during
the time period. During the time period, we will not reallocate
instances of services to physical machines but rather provision
extra instances for the services (replicas) that will actually be
used if some machines fail. As said previously, we will assume
for the results proved in this paper that FAILj does not depend
on CAPAj .

We will denote by ALIVE the set of running machines. In
our model, at the end of the time period, the machines are
either up or completely down, so that the number of instances
of service Si running on Mj is Ai,j if j|Mj ∈ ALIVE, and
0 otherwise. Therefore, ALIVEINSTi =

∑
Mj∈ALIVEAi,j de-

notes the overall number of running instances of Si at the end
of the time period. In addition, Si is running properly at the end
of the time period if and only if

∑
j|Mj∈ALIVEAi,j ≥ DEMi.

Of course, our goal is not that all instances should run
properly at the end of the time period. Indeed, such a reliability
cannot be achieved in practice since the probability that all
machines fail is clearly larger than 0 in our model. In general,
as noted in a recent paper of the NY Times [35], Data Centers
usually over-provision resources (at the price of high energy
consumption) in order to (quasi-)avoid failures. In our model,
we assume a more sustainable model, where the SLA defines
the reliability requirement RELi for service Si (together with
the penalty paid by the Cloud Provider if Si does not run with
at least DEMi instances at the end of the period). Therefore,
the Cloud provider faces the following optimization problem:



BestEnergy(m,n,DEM,REL): Find the set ON of ma-
chines that are on and the clock frequency assigned to machine
Mj , represented by CAPAj and an allocation A of instances
of services S1,S2, . . . ,Sn to machinesM1,M2, . . .Mm such
that

(i)∀j ∈ ON,

n∑
i=1

Ai,j ≤ CAPAj ,

(ii)∀i, P (ALIVEINSTi ≥ DEMi) ≥ 1− RELi,

i.e. the probability that a least DEMi instances of Si are running
on alive machines after the time period is larger than the
reliability requirement 1− RELi,

(iii) the overall energy consumption
∑
j∈ON Estat(j)+

ejCAPAαj is minimized.

C. Methodology

Throughout the paper, we will rely on the same general
approach. Through Section II to Section IV, in order to
prove claimed approximation ratios, we rely on the following
techniques.

For the lower bounds, we prove that for a service, given
the reliability constraints of this service and given failure
probabilities of the machines, at least a given number of
instances, or at least a given level of energy is needed. These
results are obtained through careful applications of Hoeffding
Bounds [36].

For the upper bounds, we concentrate on a special alloca-
tion schemes, namely Homogeneous. In a solution of Homoge-
neous, for each service, we assign to every machine the same
number of instances, i.e. ∀i,∀j ∈ ON,Ai,j = Ai. Using this
allocation scheme, we are able to derive theoretical bounds
relying on Chernoff bounds [37]. Moreover, the comparison
with the lower bound shows that the quality of obtained
solutions is reasonably high, especially in the case of energy
minimization and even asymptotically optimal when the size
of the platform or the overall volume of service instances to
be handled, becomes arbitrarily large.

D. Motivating example

In order to illustrate the objective functions that we con-
sider throughout this paper and the notations, let us consider
a service with a demand DEM = 20 and a reliability request
of REL = 4.5 · 10−6, that has to be mapped onto a Cloud
composed of m = 10 physical machines, whose failure
probability is FAIL = 10−1. Figure 1 depicts the kind of
solutions that we consider in this paper. In terms of minimizing
the number of instances, the best solution consists in allocating

10 instances of the service to the first 2 machines and 5
instances to the 8 remaining machines. Therefore, the optimal
solutions allocate a total of 60 instances, whereas 20 instances
only are required at the end of the time period, in order to
satisfy reliability constraints. The shape of the optimal solution
reflects the complexity of the problem. Indeed, it has been
proved in [25] that even in the case of a single service and
even if the allocation is given, estimating its reliability is a
#P -complete problem. The #P complexity class has been
introduced by Valiant [38] in order to classify the problems
where the goal is not to determine whether there exists a
solution (captured by NP -completeness notion) but rather
to determine the number of solutions. In our context, the
reliability of an allocation is related to the number (weighted
by their probability) of ALIVE sets that lead to an allocation
where all service demands are satisfied. In this example, in
order to check that the reliability is larger (in fact equal to)
than REL, we can observe that all configurations where at
least 4 machines are alive are acceptable (since at least 20
instances are alive as soon as 4 machines are up), together
with all configurations with 3 machines, as soon as a machine
loaded with 10 instances is involved, and the solution with
only the first two machines alive. Counting the number of
such valid configurations (weighted by their probability) leads
to the reliability of the allocation.

Generally speaking, the question of determining the opti-
mal solution remains open and all the references to the optimal
in the paper rely either on comparisons to a lower bound
or on exhaustive enumeration of the solutions (for instance,
the optimality statement for the example of this section has
been obtained through exhaustive search). Nevertheless, we
will concentrate on Homogeneous solutions, i.e. those where
all PMs are given the same number of instances. We provide
in Section II algorithms to compute the BestHomogeneous
solution.

We can notice that the optimal solution involves 60 in-
stances against around 67 for best fractional homogeneous
solution. Indeed, the best fractional solution allocates 20/3
instances to each machine, so that all configurations with 3
alive machines are enough, thus leading to a better reliability
(at a higher cost). Note that this case has been determined
using exhaustive search among all possible allocations with
10 machines and where the number of instances given to each
PM is an integer, so that this example can be seen as a worst
case.

As far as energy minimization is concerned, we can
notice that if we assume α = 2, despite the bad load
balancing among the machines in the optimal solution for the
number of instances, this solution remains optimal. Indeed,

Figure 1. Motivating example



the dynamic energy of the unbalanced solution is given by
2 ∗ 102 + 8 ∗ 52 = 400 and the energy of the homogeneous
one is given by 10 ∗ (20/3)2 = 445. On the other hand, if
α = 3 for instance, then the homogeneous solution consumes
less energy (10∗(20/3)3 = 2967) than the unbalanced solution
(2∗103∗8∗53 = 3000). Thus, we can observe on this example
that minimizing the dynamic energy (rather than minimizing
the number of instances) favors homogeneous solutions.

Therefore, in the rest of this paper, we will use fractional
homogeneous solutions in order both to derive approximation
algorithms and upper bounds on the number of required
resources. Indeed, we prove in Section II that homogeneous
allocations are asymptotically optimal for dynamic energy
minimization when the number of involved PMs becomes
large. In Section IV, we provide an extensive set of simulations
that prove that homogeneous solutions are in general close to
optimal for general energy minimization in a large number of
situations.

E. Outline of the Paper

As we have noticed through the motivating example,
BestEnergy is in general difficult since verifying that a given
allocation satisfies a given reliability constraint is already
#P−complete. Nevertheless, we prove in this paper that
even when the allocation is to be determined, it is possible
to provide low-complexity deterministic approximation algo-
rithms, that are even asymptotically optimal when the sum
of the demands becomes arbitrarily large. Another original
result that we prove in this paper is that minimizing the
energy (relying on DVFS) induced by replication is easier than
minimizing the number of replicas, whereas in many contexts
(see [39]) the non-linearity of energy consumption makes the
optimization problems harder. In our context, approximation
ratio are smaller for energy minimization than for classical
replication minimization (that would correspond to makespan
or load balancing in other contexts).

To prove this result, we progressively come to the most
general problem through the study of more simple objective
functions. Firstly, we consider several models for energy
minimization. First, we address in Section II the case where
dynamic energy only is concerned, i.e. without taking explic-
itly the leakage term into account. Then, we introduce the static
energy part in Section III and the more general MIN-ENERGY
problem. For MIN-ENERGY, the setting is the same except that
the number of participating machines is to be determined and
DVFS can be used to determine the capacity of each machine.
At last, in Section IV, we perform some simulations in order
to show that homogeneous solutions are in fact very close to
optimal.

II. DYNAMIC ENERGY MINIMIZATION USING DVFS

In this section, we concentrate on the dynamic energy
minimization problem. Therefore, we assume that the number
of resources that are switched on is fixed in advance. Then,
since no reallocation or VM migration will take place dur-
ing the considered period, our goal is to actually run more
instances than what is actually required by the demand of
the service, so as to cope automatically with machine failures
during the period. Indeed, since we are considering services

typically serving requests and where the demand is given as a
minimal number of request per time unit, it is both sufficient
and necessary to enforce that the remaining serving capacity
given failures is large enough with the reliability expressed in
the SLA .

A. Lower bound

Let us consider the case of a single service to be mapped
onto a fixed number of machines when the objective is to
minimize the amount of resources necessary to enforce the
conditions defined in the SLA in terms of quantity (of alive
instances at the end of the time period) and reliability. The
problem comes into two flavours depending on the resources
we want to optimize. Recall that Aj is the number of instances
of the service initially allocated to machine Mj . In its phys-
ical machines version, the optimization problem consists in
minimizing the number of instances allocated to the different
machines, i.e. minimizing

∑
j Aj . In its energy minimization

version, we rely on DVFS mechanism in order to adapt the
voltage of a machine to the need of the instances allocated to it.
In general, energy consumption models assume that the energy
dissipated by a processor running at speed s is proportional to
sα. Therefore, the energy dissipated by a processor running Aj
instances will be proportional to Aαj and the overall objective
is to minimize the overall dissipated energy, i.e.

∑
j Aαj .

In order to find the lower bound, let us consider any
allocation (where Aj is the number service instances initially
allocated to machine Mj) and let us prove that if the amount
of resources is too small, then reliability constraints cannot be
met. Recall that ALIVEINSTj is the number of instances of
the service that are alive on machine Mj at the end of the
time period. ALIVEINSTj is thus a random variable equal to
Aj with a probability 1 − FAIL and to 0 with a probability
FAIL.

Hence, the expected number of alive instances is given by
E (ALIVEINST) = (1 − FAIL)

∑m
j=1 ALIVEINSTj . Hoeffding

inequality (see [36]) says how much the number of alive
resources may differ from its expected value. In particular,
for the lower bound, we will use it in the following form,
that bounds the chance of being lucky, i.e. to find a correct
allocation with few instances. More precisely, it states that for
all t > 0:

P (ALIVEINST ≥ E (ALIVEINST) + t) ≤ exp

(
−2 t2∑m

j=1A2
j

)
.

Let us choose t =
√
−ln (1− REL)

∑n
j=1A2

j/2, so that

exp
(
−2 t2∑m

j=1A2
j

)
= 1− REL. Noting K ′ = −ln(1−REL)

2 , and
since E (ALIVEINST) = (1 − FAIL)

∑m
j=1Aj , the previous

equation becomes

P

ALIVEINST ≥
m∑
j=1

Aj +

√√√√K ′ ×
m∑
j=1

A2
j

 ≤ 1− REL.

Now, if a given allocation succeeds, then, by definition,
P (ALIVEINST ≥ DEM) ≤ 1− REL.



Thus we obtain that a necessary condition on the Aj’s so
that the reliability constraint is enforced is given by

(1− FAIL)

m∑
j=1

Aj +

√√√√K ′ ×
m∑
j=1

A2
j ≥ DEM.

As stated in the introduction of this section, we are inter-
ested either in minimizing

∑
j Aj for resource use minimiza-

tion, and
∑
j Aαj for energy minimization. To obtain lower

bounds on these quantities in order to achieve quantitative
(number of alive instances) and qualitative (reliability con-
straints), we rely on Hoelder’s inequality, that states that if
1/p+ 1/q = 1, then

∀aj , bj ≥ 0,
∑
j

ajbj ≤

∑
j

aj
p

1/p

×

∑
j

bj
q

1/q

.

With p = q = 2, aj = bj = Aj , we obtain
∑
A2
j ≤

(
∑
Aj)2, so that

(1− FAIL)

m∑
j=1

Aj +

√√√√K ′ ×
m∑
j=1

A2
j

≤
(
1− FAIL +

√
K ′
)
×

m∑
j=1

Aj .

Hence a necessary condition in order to satisfy the constraints
is given by

m∑
j=1

Aj ≥
DEM

1− FAIL +
√
K ′

= MINREP.

Therefore, any solution that satisfies quantitative and qual-
itative constraints must allocate at least MINREP instances,
whatever the distribution of instances onto machines is.

With p = α, 1/q = (1 − 1/α), aj = Aj and bj = 1, we
obtain

∑
Aj ≤

(∑
Aαj
)1/α

m1−1/α.

Similarly, assuming that α > 2 hence α/2 > 1, with p =
α/2, 1/q = (1− 2/α), aj = A2

j and bj = 1, we obtain

m∑
j=1

A2
j ≤

 m∑
j=1

Aαj

2/α

m1−2/α, so that

(1− FAIL)

m∑
j=1

Aj +

√√√√K ′ ×
m∑
j=1

A2
j

≤
(
(1− FAIL)m1−1/α +

√
K ′m1/2−1/α

)
×

 m∑
j=1

Aαj

1/α

.

Also, we can derive another necessary condition defined as m∑
j=1

Aαj

 ≥( DEM

(1− FAIL)m1−1/α +
√
K ′m1/2−1/α

)α
= MINENERGY,

which also holds true for α = 2.

Therefore, any solution that satisfies quantitative and qual-
itative constraints must consume at least MINENERGY, what-
ever the distribution of instances onto machines is.

B. Upper bound – Homogeneous

1) MIN-REPLICATION: As explained above, in order to
obtain upper bounds on the amount of necessary resources
(either in terms of number of instances or energy), it is enough
to exhibit a valid solution (that satisfies the constraints defined
in the SLA). To achieve this, we will concentrate in this part on
homogeneous (fractional) solutions, with an equally-balanced
allocation among all machines (i.e. ∀j,Aj = A).

An assignment is considered as failed when there are not
enough instances of the service that are running at the end
of the time period, hence Pfail = P (ALIVEINST < DEM).
From the homogeneous characteristics of the allocations, we
derive that ALIVEINST = A × |ALIVE|, then Pfail =
P
(
|ALIVE| < DEM

A
)
. |ALIVE| can be described as the sum

of random independent variables
∑m
j=1Xj , where, for all

j ∈ {1, . . . ,m}, Xj depicts the fact that machine Mj is alive
at the end of the time period (Xj is equal to 1 with probability
1− FAIL, and to 0 with probability FAIL).

Hence, the expected value of |ALIVE| is given by
E (|ALIVE|) = (1 − FAIL)m. Chernoff bound (see [37])
says how much the number of alive machines may differ
from its expected value. We use in this part Chernoff bounds
rather than Hoeffding bounds because the random variables
take their value in {0, 1} instead of {0, . . . , A} and Cher-
noff bounds are more accurate in this case. In particular,
for the upper bound, we will use it in the following form,
that bounds the chance of being unlucky, i.e. to fail hav-
ing a correct allocation while allocating a large number of
instances. More specifically, Chernoff bound gives that for
all ε > 0, P (|ALIVE| ≤ (1− FAIL − ε)m) ≤ e−2ε

2m. As
we want to ensure that Pfail ≤ REL, we choose ε such
that e−2ε

2m = REL, i.e. ε =
√
K/m by noting K =

−ln(REL)
2 . This allows to rewrite the previous equation into:

P
(
|ALIVE| ≤ (1− FAIL −

√
K/m)m

)
≤ REL. Finally, we

obtain a sufficient condition, so that the reliability constraint
is fulfilled for the service:

Am ≥ DEM

1− FAIL −
√

K
m

= MAXREP,

since then

Pfail = P (ALIVEINST < DEM)

= P (|ALIVE|A < DEM)

≤ P
(
|ALIVE| ≤ (1− FAIL −

√
K/m)m

)
Pfail ≤ REL.

Therefore, it is possible to satisfy the SLA with at most
MAXREP instances of the service. Similarly, we can derive an
upper bound of the energy needed to enforce the SLA. Indeed,



with the same value of A, we obtain

Aαm ≥
(

DEM

(1− FAIL)m1−1/α −
√
Km1/2−1/α

)α
= MAXENERGY.

C. Comparison

When minimizing the number of necessary instances to

enforce the SLA, we obtain MAXREP
MINREP

=
1−FAIL+

√
K′

1−FAIL−
√

K
m

. For

realistic values of the parameters, above approximation ratio

is good (close to one), since both
√
K ′ =

√
−ln(1−REL)

2

and
√

K
m =

√
−ln(REL)

2m are small as soon as m is large.
Nevertheless, the ratio is not asymptotically optimal when m
becomes large.

On the other hand, for energy minimization, we have

MAXENERGY

MINENERGY
=

(
(1−FAIL)m1−1/α+

√
K′m1/2−1/α

(1−FAIL)m1−1/α−
√
Km1/2−1/α

)α
=

(
(1−FAIL)+

√
K′
m

(1−FAIL)−
√

K
m

)α
,

so that this ratio tends to 1 when m becomes arbitrarily
large. This shows that for energy minimization, homogeneous
fractional solutions provide very good results when m is large
enough. In the following section, we prove that an allocation
with a large dispersion (in a sense described precisely below)
of the number of instances allocated to the machines cannot
achieve SLA constraints with optimal energy.

D. Can optimal solutions be strongly heterogeneous ?

Above results state that for the minimization of the number
of instances and for the minimization of the energy, homo-
geneous allocations provide good solutions. Nevertheless, we
know from the example depicted in Figure 1 that optimal solu-
tions, for both the minimization of the number of instances and
the minimization of the energy are not always homogeneous. In
the case of energy minimization, the dispersion of an allocation
cannot be too large, as stated more formally in the following
theorem.

Theorem 1: Let us consider a valid allocation Aj whose
energy is not larger than MAXENERGY, the upper bound on
the energy consumed by an homogeneous allocation. Then,

if V ′ =
∑

(A2
j )
α/2

m −
(∑

A2
j

m

)α/2
is used as the measure of

dispersion of the Aj’s (related to the α/2-th moment of their
square values), then

mαV ≤

 DEM

1− FAIL −
√

K
m

α

−

(
DEM

1− FAIL +
√
K ′

)α
.

Proof: Let us first introduce V =
∑
Aαj
m −

(∑
Aj
m

)α
. Then

V ≥ V ′. Indeed, V − V ′ =
(∑

A2
j

m

)α/2
−
(∑

Aj
m

)α
that has

the same sign as
(∑

A2
j

m

)1/2
−
(∑

Aj
m

)
that is non-negative

by application of Hoelder’s inequality.

Moreover, we have seen that a necessary condition (see
Section II-A) for allocation Aj to be valid is given by

(1− FAIL)

m∑
j=1

Aj +

√√√√K ′ ×
m∑
j=1

A2
j ≥ DEM,

what induces (1 − FAIL)
(MINENERGY

m − V
)1/α

+√
K ′m

(MINENERGY
m − V ′

)1/α ≥ DEM and finally

V ′ < MINENERGY
m −

(
DEM

(1−FAIL)m−
√
Km

)α
or equivalently

mαV ′ ≤
(

DEM

1−FAIL−
√

K
m

)α
−
(

DEM

1−FAIL+
√
K′

)α
.

III. OVERALL ENERGY MINIMIZATION

In above section, we have considered the case where the
number of used machines is fixed in advance. In this context,
the leakage term is paid for all machines, and is a constant.
In general, in the context of a Cloud platform, both the set of
used resources and the voltage associated to them have to be
determined. In this case, given that k ∈ {1, . . . ,m}, the goal
is to minimize

E(low)(k) = k × Estat + k ×

(
DEM

(1− FAIL)k +
√
K ′k

)α
.

In above problem, there is intuitively an interesting compro-
mise to be done. Since α ≥ 2, the machines are more efficient
in terms of requests per watt when running at a low frequency.
On the other hand, running the machines at a lower frequency
requires a larger number of machines and therefore induces a
higher leakage term.

A. Lower bound

Let g be the function defined on ]0,+∞[ by g(x) =
gt(x)/g

α
d (x). Let us prove that if gd is non-decreasing, con-

cave, positive, and gt is non-increasing, convex and positive,
then g is convex. On the one hand, if gd fulfills its constraints,
then g−αd is non-increasing, convex and positive, and on the
other hand, the product of two non-increasing, convex and
positive is a convex function (this can be easily seen on the
derivative).

Let us apply above lemma with gt(x) = x/xα/2 (which is
convex since α ≥ 2) and gd(x) = (1− FAIL)

√
x+

√
K ′, and

deduce easily that E(low) is convex.

Therefore, E(low) admits a unique minimum on [1,m].
Since E(low) →

0
+∞ and E(low) →

∞
+∞,

(
E(low)

)′
is null

at some point in [0,+∞[, and let us define x(low)
min such that(

E(low)
)′
(x

(low)
min ) = 0, i.e. as

Estat +

 DEM

(1− FAIL)x
(low)
min +

√
K ′x

(low)
min

α

×

(
−(α− 1)(1− FAIL) +

(
1− α

2

)√ K ′

x
(low)
min

)
= 0. (1)

The minimum of function E(low) is reached on [1,m] for
min(max(x

(low)
min , 1),m).
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Figure 2. Simulation results for FAIL = 10−2, DEM = 104, REL = 10−5, α = 3, Estat = 5× 104.

B. Upper bound – Homogeneous

The energy consumption of an Homogeneous solution on
k machines is given by

E(up)(k) = k × Estat +
1

kα−1

 DEM

(1− FAIL)−
√

K
k

α

.

Let us apply again above lemma with gt(x) =

DEMα/xα−1 and gd(x) = 1−FAIL−
√

K
x to prove that E(up)

is convex and consequently admits a unique minimum on
[1,m]. Moreover, E(up)(x) −→

x→∞
+∞ and E(up)(x) −→

x→0
+∞

so that we can uniquely define x(up)min by
(
E(up)

)′
(x

(up)
min ) = 0,

i.e.

Estat =

 DEM

(1− FAIL)x
(up)
min −

√
Kx

(up)
min

α

×

(
(α− 1)(1− FAIL) +

(
1− α

2

)√ K ′

x
(up)
min

)
. (2)

IV. SIMULATIONS

The application of Chernoff bounds enables to find valid
solutions (satisfying the reliability constraints) and to obtain
theoretical upper bounds, but Chernoff bounds are in general
too pessimistic, especially in the case when the number of
machines is small. Hence, we derive in this section a heuristic
that returns a homogeneous allocation with lower energy than
the one obtained in Section II-B.

A. Algorithms for MIN-ENERGY-NO-SHUTDOWN Problem

In this section, we concentrate of the dynamic energy part
only, and we assume that the overall number of running PMs
is fixed so that the leakage term has to be paid for all PMs.

1) lower.bound: In order to evaluate the performance of the
heuristics, we rely on the lower bound proved in Section II-A.
This is a lower bound on the energy consumption that is
required in order to fulfill the reliability constraint.

2) theo.homo: This algorithm builds a valid solution fol-
lowing the Homogeneous policy. We have exhibited such a
solution in Section II-B. In order to determine the frequency
at which each PM should be run, we rely on Chernoff bounds
to estimate the reliability of the allocation. Therefore, due to
the application of conservative Chernoff bounds, this solution
is in general pessimistic, in the sense that induced energy may
not be optimal.

3) best.homo: In order to cope with the limitations of
theo.homo algorithm, best.homo finds the best solution (i.e.
the one that minimizes the energy consumption) following
Homogeneous policy. To do this, we need to estimate precisely
the reliability of an allocation, instead of relying on a lower
bound as in theo.homo. best.homo can be decomposed into
an off-line and an on-line phase; the former is executed once
and for all, while the latter is to be run for each reliability
constraint.

In the off-line phase, we rely a double-entry table, where
a row is associated with a number of machines m and a
column corresponds to a reliability requirement REL. The
value of a cell indicates the maximum number m′ such that the
probability of having m′ ≤ m alive machines among the m
initial machines at the end of the day is not less than 1−REL.
Those values can be obtained thanks to a cumulative binomial
distribution.

In the on-line phase, we perform a binary search on the
machine capacity, so that we end up with a valid solution
minimizing the energy. Obviously, this solution is the one that
minimizes the common clock frequency of the machines, and
if the reliability constraint is fulfilled for a given capacity, it is
a fortiori true for a higher frequencies. At each step, for a given
frequency, we just have to check, using the table, whether the
number of alive instances is large enough.

B. Algorithms for MIN-ENERGY problem

Let us now consider the case when both static (leakage) and
dynamic energy have to be taken into account, and when both
the number of PMs and their frequency have to determined.
When adding a non-zero static energy, all heuristics and



0e+00

2e+07

4e+07

25000 50000 75000 100000
Estat

To
ta

l e
ne

rg
y

(a) FAIL = 10−1, REL = 5× 10−7

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

25000 50000 75000 100000
Estat

To
ta

l e
ne

rg
y

(b) FAIL = 10−3, REL = 5× 10−7

0e+00

1e+07

2e+07

3e+07

4e+07

25000 50000 75000 100000
Estat

To
ta

l e
ne

rg
y

(c) FAIL = 10−2, REL = 10−5

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

25000 50000 75000 100000
Estat

To
ta

l e
ne

rg
y

(d) FAIL = 10−2, REL = 10−9

Algorithm lower.bound theo.homo best.homo

(e) Legend

Figure 3. Simulation results for DEM = 104 and α = 3

bounds are such that the overall dissipated energy tends to
+∞ if the number of machines tends to 0 (because of the
dynamic energy) or to +∞ (because of the static energy).
There remains to find for each of them the optimal number of
machines.

We have proved the convexity of the energy function re-
turned by lower.bound. Thus, solving Equation 1 using binary
searc is enough in order to obtain the optimal m. We operate
in the same way for theo.homo, solving Equation 2 thanks
to a binary search. Since the energy consumption of the best
homogeneous allocation is also convex (as a function of the
number of machines), we also rely on the same technique for
best.homo on the MIN-ENERGY problem. More specifically,
we perform a binary search in order to obtain the number of
used machines that leads to minimum energy consumption.

C. Results for MIN-ENERGY problem

1) For a single configuration: In Figure 2, we compare
the performance of all three heuristics under the following

settings: FAIL = 10−2, DEM = 104, REL = 10−5, α = 3,
Estat = 5×104 and m varies between 1 and 250. lower.bound
is depicted in red, best.homo in blue, theo.homo in green. As
expected, the dynamic energy decreases with the number of
machines and as we proved in Section II-C, the lower and the
upper bound converge when the number of machines becomes
large. When both leakage and dynamic energy terms are
taken into account, then the plots obtained for lower.bound,
best.homo and theo.homo are convex, as proved in Section III.
Using binary search for each plot, we are able to determine,
for each heuristic, the point that minimizes the overall energy
(respectively the red point for lower.bound, the blue point for
best.homo and the green point for theo.homo).

In this example, the energy consumed by lower.bound
is 2.58 × 107, while best.homo consumes 2.67 × 107 and
theo.homo 2.94×107, showing that theo.homo is 14% larger
than the lower bound and that best.homo only 4% larger than
the lower bound.



2) Simulation Results: In order to study the influence of the
different parameters, we performed a large set of simulations,
whose results are depicted on Figure 3. Each point in Figure 3
corresponds to the results of an experiment for a single
configuration described in Section IV-C1. For instance, the
results of the configuration depicted in previous section can
be read on Figure 3(c) when Estat = 5× 104.

In general, we can observe that the simulation results
prove the efficiency of homogeneous distributions with respect
to energy minimization. Indeed, the red plots correspond to
a lower bound that holds true for any (possibly heteroge-
neous) solutions. In all cases, the ratio between the upper
bound theo.homo and the lower bound lower.bound is always
smaller than 1.2 and that the ratio between the upper bound
best.homo and the lower bound lower.bound is always smaller
than 1.08.

Therefore, our simulations results prove both that
lower.bound is always very close to the lower bound and that
the approximation ratio provided by theo.homo is in general
not too pessimistic.

V. PRICING ISSUES

In practice, it may be difficult for the cloud user to evaluate
the reliability requirements for the service they are running. On
the other hand, our work enables the cloud provider to price the
reliability constraint since it is possible to estimate the overall
price of the energy PRICE(E(REL)) that is required to enforce
reliability REL for a given service. From this information, it
is possible for the Cloud provider to turn its offer into a list
of pairs (price, compensation), so that

(1−REL)×price−REL×compensation = PRICE(E(REL)).

In this case, the expectation of the price received by the
provider is equal to its actual energy cost.

VI. CONCLUSION AND OPEN PROBLEMS

In this paper, we have proposed approximation algorithms
for minimizing both the number of used resources and the
dissipated energy in the context of static service allocation
under reliability constraints in Clouds. For both optimization
problems, we have given lower bounds and we have exhibited
algorithms that achieve claimed reliability. In the case of
energy minimization, we have even been able to prove that
proposed algorithm is asymptotically optimal when the overall
demand or the number of machines becomes arbitrarily large.
Such a result is important since it enables, for the point of
view of the Cloud provider, to associate a price to reliability
(or equivalently to fix penalties in case of SLA violation).
This work opens many perspectives. First, relying on different
techniques, better approximation ratio in the case of low
number of resources are needed. Then, the extension to several
services is trivial in the case of resource usage minimization,
but not trivial in the case of energy minimization. It would also
be interesting to explicitly take into account the memory print
of the services, so as to limit the number of different services
that a machine can handle. This would lead to different results,
by enforcing to limit the number of participating physical
machines to the deployment of each individual service. At
last, we concentrate in this work on the static phase, and we

assume that migrations and redistributions take place at regular
time steps. It would be very interesting to mix both migrations
and static allocations in order to minimize the overall required
energy, since more frequent redistributions induce less energy
consumed by replication but more energy wasted by migration
phases.

REFERENCES

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7–18, 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “Above the clouds: A
berkeley view of cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599 – 616, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X08001957

[4] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost
of a cloud: research problems in data center networks,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008. [Online].
Available: http://doi.acm.org/10.1145/1496091.1496103

[5] H. Van, F. Tran, and J. Menaud, “SLA-aware virtual resource manage-
ment for cloud infrastructures,” in IEEE Ninth International Conference
on Computer and Information Technology. IEEE, 2009, pp. 357–362.

[6] R. Calheiros, R. Buyya, and C. De Rose, “A heuristic for mapping
virtual machines and links in emulation testbeds,” in 2009 International
Conference on Parallel Processing. IEEE, 2009, pp. 518–525.

[7] O. Beaumont, L. Eyraud-Dubois, H. Rejeb, and C. Thraves, “Hetero-
geneous Resource Allocation under Degree Constraints,” IEEE Trans-
actions on Parallel and Distributed Systems, 2012.

[8] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer,
M. Dang, and K. Pentikousis, “Energy-efficient cloud computing,” The
Computer Journal, vol. 53, no. 7, p. 1045, 2010.

[9] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual
machines in cloud data centers,” in 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing. IEEE, 2010, pp.
577–578.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide
to the Theory of NP-Completeness. W. H. Freeman and Company,
1979.

[11] L. Epstein and R. van Stee, “Online bin packing with resource aug-
mentation.” Discrete Optimization, vol. 4, no. 3-4, pp. 322–333, 2007.

[12] D. Hochbaum, Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, 1997.

[13] W. Cirne, “Scheduling at google,” in 16th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), in conjunction with IPDPS
2012, 2011.

[14] K. Ranganathan, A. Iamnitchi, and I. Foster, “Improving data avail-
ability through dynamic model-driven replication in large peer-to-
peer communities,” in Cluster Computing and the Grid, 2002. 2nd
IEEE/ACM International Symposium on, may 2002, p. 376.

[15] D. da Silva, W. Cirne, and F. Brasileiro, “Trading cycles for information:
Using replication to schedule bag-of-tasks applications on computa-
tional grids,” in Euro-Par 2003 Parallel Processing, ser. Lecture Notes
in Computer Science, H. Kosch, L. Böszörményi, and H. Hellwagner,
Eds. Springer Berlin / Heidelberg, 2003, vol. 2790, pp. 169–180.

[16] M. Lei, S. V. Vrbsky, and X. Hong, “An on-line replication strategy
to increase availability in data grids,” Future Generation Computer
Systems, vol. 24, no. 2, pp. 85 – 98, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X07000830

[17] H.-I. Hsiao and D. J. Dewitt, “A performance study of three
high availability data replication strategies,” Distributed and Parallel
Databases, vol. 1, pp. 53–79, 1993, 10.1007/BF01277520. [Online].
Available: http://dx.doi.org/10.1007/BF01277520



[18] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima, “Exploiting repli-
cation and data reuse to efficiently schedule data-intensive applications
on grids,” in Job Scheduling Strategies for Parallel Processing, ser.
Lecture Notes in Computer Science, D. Feitelson, L. Rudolph, and
U. Schwiegelshohn, Eds. Springer Berlin / Heidelberg, 2005, vol.
3277, pp. 54–103.

[19] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka,
P. Messina, T. Moore, R. Stevens, A. Trefethen et al., “The international
exascale software project: a call to cooperative action by the global high-
performance community,” International Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 309–322, 2009.

[20] “Eesi, "the european exascale software initiative", 2011,” http://www.
eesi-project.eu/pages/menu/homepage.php.

[21] F. Cappello, “Fault tolerance in petascale/exascale systems: Current
knowledge, challenges and research opportunities,” International Jour-
nal of High Performance Computing Applications, vol. 23, no. 3, pp.
212–226, 2009.

[22] K. Ferreira, J. Stearley, J. Laros III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. Bridges, and D. Arnold, “Evaluating the
viability of process replication reliability for exascale systems,” in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011, p. 44.

[23] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien, “Check-
pointing strategies for parallel jobs,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International Conference
for. IEEE, 2011, pp. 1–11.

[24] F. Cappello, H. Casanova, and Y. Robert, “Checkpointing vs. migration
for post-petascale supercomputers,” ICPP’2010, 2010.

[25] O. Beaumont, L. Eyraud-Dubois, and H. Larchevêque, “Reliable
Service Allocation in Clouds,” in IPDPS 2013 - 27th IEEE
International Parallel & Distributed Processing Symposium, Boston,
États-Unis, 2013. [Online]. Available: http://hal.inria.fr/hal-00743524

[26] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynam-
ically variable voltage processors,” in Proceedings of International
Symposium on Low Power Electronics and Design (ISLPED). ACM
Press, 1998, pp. 197–202.

[27] K. Pruhs, R. van Stee, and P. Uthaisombut, “Speed scaling of tasks
with precedence constraints,” Theory of Computing Systems, vol. 43,
pp. 67–80, 2008.

[28] A. P. Chandrakasan and A. Sinha, “Jouletrack: A web based tool for
software energy profiling,” in Design Automation Conference. IEEE
CS Press, 2001, pp. 220–225.

[29] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS), 2003, pp. 113–121.

[30] J.-J. Chen and T.-W. Kuo, “Multiprocessor energy-efficient scheduling
for real-time tasks,” in Proceedings of International Conference on
Parallel Processing (ICPP). IEEE CS Press, 2005, pp. 13–20.

[31] X. Qi, D. Zhu, and H. Aydin, “Global reliability-aware power man-
agement for multiprocessor real-time systems,” in RTCSA, 2010, pp.
183–192.

[32] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynam-
ically variable voltage processors,” in Proceedings of International
Symposium on Low Power Electronics and Design (ISLPED). New
York, NY, USA: ACM Press, 1998, pp. 197–202.

[33] P. Langen and B. Juurlink, “Leakage-aware multiprocessor scheduling,”
Journal of Signal Processing Systems, vol. 57, no. 1, pp. 73–88, 2009.

[34] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem, “Energy
aware scheduling for distributed real-time systems,” in Proceedings
of the International Parallel and Distributed Processing Symposium
(IPDPS), 2003, pp. 21–29.

[35] “Data centers waste vast amounts of energy belying industry
image,” http://www.nytimes.com/2012/09/23/technology/
data-centers-waste-vast-amounts-of-energy-belying-industry-image.
html.

[36] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, 1963.

[37] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations,” The Annals of Mathematical
Statistics, vol. 23, no. 4, pp. 493–507, 1952.

[38] L. Valiant, “The complexity of computing the permanent,” Theoretical
Computer Science, vol. 8, no. 2, pp. 189 – 201, 1979.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
0304397579900446

[39] A. Benoit, P. Renaud-Goud, and Y. Robert, “Power-aware replica
placement and update strategies in tree networks,” in IPDPS, 2011,
pp. 2–13.


