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interfacing ofliquid chromatography with
MALDI-MS. We have shown that a new
matrix consisting of a graphite/glycerol or
silicon/glycerol slurry can be used very
generally for sensitive MALDI-MS on
peptides, proteins, oligosaccharides (Fig.),
polar and apolar polymers up to molecular
weights of 15 kDa [13][14].

Fourier- Transform Mass Spectrome-
try (FTMS)

Some MALOI ion formation processes
take place after desorption, by gas-phase
protonation (cationization) reactions in the
MALDI plume. If this is the dominant
process, fragmentation will be controlled
by relative proton (cation) affinities of
matrix and analyte. Very limited proton
affinity (PA) data on nonvolatile MALDI
matrices is available. We are measuring
them by bracketing reactions in the FTMS

instrument using gaseous reference bases
of known PA. We have determined the
proton affinity values of the MALDI ma-
trices 2,5-DHB, 4-HCCA, and sinapic acid
[15]. The PA values of some common
matrix fragments were also measured and
found to differ siginificantly from that of
the parent molecule. In some cases, this
difference amounts to 60 kJ/mol (15 kcal/
mol). Furthermore, no correlation between
fragmentation of analytes and the PA of
the matrices were found.
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The development of new methods for the
formation of C,C bonds has attracted the
interest of synthetic chemists for a long
time. An impressive number of stereocon-
trolled procedures based on ionic and con-
certed reactions have been developed.
During the last 15 years, radical reactions
became a useful tool in organic synthesis.
For a long period of time, they were con-
sidered as essentially non-stereoselective.
However, recent developments have com-
pletely altered this belief, and subsequent-
ly rules were developed to rationalize and
predict the stereochemical outcome of cy-
cJization reactions, reactions in rigid sys-
tems, and even reactions in acyclic sys-
tems [1]. A few years ago, strongly en-
couraged by the attribution of the Alfred
Werner Fellowship, we decided to inves-
tigate the use of Lewis acids in order to
control the stereoselectivity of radical re-
actions. Some of our recent results are
depicted below.
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AIBN = 2,2'-azabis(2-methylprapanenitrile)

Scheme 3

Scheme 2

Diastereoselectivity Control Using
Chelation

Diastereoselectivity Control Using
Monocomplexation

During our study of the allylation reac-
tions of cyclic sulfoxides, we discovered
that protic solvents which form hydrogen
bonds with the a-atom of the 5-0 bond
enhanced the stereoselectivity. Use of
oxophylic Lewis acids gives even better
results, exceptionally high levels of stereo-
control are reached with bulky aluminum
derivatives. For instance, the allylation of
the tetrahydrothiophen-2-yl radical gives
a modest 70:30 trans/cis-mixture of iso-
mers in benzene, however, the presence of
methylaluminum di[(4-bromo- 2,6-di(tert-
butyl)phenoxide] (MABR) allows us to
enhance the diastereoselectivity to a cis/
trans-ratio of 98.7:1.3 [2]. The same ap-
proach was successfully applied to acyclic
sulfinylated radicals. In this case, the sense
of the diastereoselectivity can be fully
reversed by using bulky Lewis acids
(Scheme I) [3]. This strategy is not limited
to sulfoxides, similar results were obtained
with cyclic and acyclic 2-hydroxy- and 2-
alkoxyalkyl radicals [4].
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In a few years, great progress has been
accomplished in Lewis-acid-controlled
radical reactions. Our contribution to this
field has allowed to define suitable metals,

Conclusions

chiral aluminum-based Lewis acids pre-
pared from Me3AI and chiral diols/di-
amides ligands (Scheme 4). The observed
enantioselectivities using stoichiometric
amounts of chiral additive are still modest
(~ 34% ee). By analogy to cycloaddition
reactions, a model is proposed to rational-
ize the sense of the enantioselectivity.

1) BU3SnH/Me3AI
2)TFA

OHn::

TFA = Trifluoroacetic acid

Enantioselectivity Control

of the radical and by reaction of the most
stable conformer with small radical traps
such as tin hydride syn to the bulky neigh-
boring substituent.

Chiral Lewis acids are very promising
for the development of catalytic enantio-
selective radical reactions. In our first
approach, we have performed enantiose-
lective radical C,C bond formation direct-
ed by chiral Lewis acids [8]. N-(2-
Iodopropiony l)oxazolidinones are allylat-
ed with allylstannane in the presence of

Our approach in this field is based on
practical considerations. We were looking
for efficient and simple ways to control the
stereoselectivity of 2-hydroxyalkyl radi-
cals. The reported strategies employed in
such systems used protected hydroxy
groups. We have developed a method di-
rectly based on the free alcohol via forma-
tion of aluminum-aIkoxide derivative upon
treatment with methylaluminum deriva-
tives. This method is particularly efficient
for p-hydroxy esters such as ethyl 3-hy-
droxybutyrate and diethyl malate (Scheme
2) [5]. In the last case, the allylation in the
presence ofMAD furnishes the threo(syn)-
product. This stereochemical outcome is
complementary to the well-known alkyl-
ation of the corresponding enolate.
Our approach can also be used with

1,2-dioxy-substituted radicals. With sec-
ondary radicals, the stereochemistry is
explained by a model related to the Cram
chelation model (Scheme 3, above) dem-
onstrating again the similarity between
the models used for ionic and radical reac-
tions [6]. Interestingly, tertiary radicals
behave differently, and attack of the radi-
cal chelate occurs syn to the bulky neigh-
boring group (anti-Cram chelation mod-
el). One example of this type is depicted in
Scheme 3, below [7]. This peculiar behav-
ior is best explained by pyramidalization
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in particular aluminum, for these reac-
tions. We have also developed several
different strategies for the control of the
stereochemistry. Further investigation of
the broad and hot topic of catalytic enan-
tioselective radical reactions should en-

hance the range of possible applications of
free-radical reactions.
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1. Relatives of the dOBent [Cp2ML3]
Family. An Extended Buckel Molecu-
lar Orbital (eHMO) and Structure-
Correlation Study of the Edge-
Bridged Tetrahedron (EBT -5)

When one thinks offive coordination, the
trigonal bipyramid (TB-5) and the square
pyramid (SPY-5) immediately come to
mind. Their interconversion, via the Berry
mechanism, has been thoroughly studied
[5]. In the field of dOorganometallic chem-
istry, the bent metallocene Cp2M frag-
ment (Cp = cyclopentadienyl) occupies a
central position. Considering cyclopenta-
dienyls as six-electron donors occupying
a single coordination site, [Cp2ML3] com-
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coordination properties of Crsymmetric phos-
phine ligands and their use as acetalization
catalysts [1][2]. This work, which was awarded
the ETH Silbermedaille, benefited from a fruit-
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