589 research outputs found

    Towards a representation of priming on soil carbon decomposition in the global land biosphere model ORCHIDEE (version 1.9.5.2)

    Get PDF
    Priming of soil carbon decomposition encompasses different processes through which the decomposition of native (already present) soil organic matter is amplified through the addition of new organic matter, with new inputs typically being more labile than the native soil organic matter. Evidence for priming comes from laboratory and field experiments, but to date there is no estimate of its impact at global scale and under the current anthropogenic perturbation of the carbon cycle. Current soil carbon decomposition models do not include priming mechanisms, thereby introducing uncertainty when extrapolating short-term local observations to ecosystem and regional to global scale. In this study we present a simple conceptual model of decomposition priming, called PRIM, able to reproduce laboratory (incubation) and field (litter manipulation) priming experiments. Parameters for this model were first optimized against data from 20 soil incubation experiments using a Bayesian framework. The optimized parameter values were evaluated against another set of soil incubation data independent from the ones used for calibration and the PRIM model reproduced the soil incubations data better than the original, CENTURY-type soil decomposition model, whose decomposition equations are based only on first-order kinetics. We then compared the PRIM model and the standard first-order decay model incorporated into the global land biosphere model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems). A test of both models was performed at ecosystem scale using litter manipulation experiments from five sites. Although both versions were equally able to reproduce observed decay rates of litter, only ORCHIDEE-PRIM could simulate the observed priming (R² = 0.54)in cases where litter was added or removed. This result suggests that a conceptually simple and numerically tractable representation of priming adapted to global models is able to capture the sign and magnitude of the priming of litter and soil organic matter

    Pathways for balancing CO2 emissions and sinks

    Get PDF
    Imbalance-P paper Contact with: Josep Peñuelas, [email protected] December 2015 in Paris, leaders committed to achieve global, net decarbonization of human activities before 2100. This achievement would halt and even reverse anthropogenic climate change through the net removal of carbon from the atmosphere. However, the Paris documents contain few specific prescriptions for emissions mitigation, leaving various countries to pursue their own agendas. In this analysis, we project energy and land-use emissions mitigation pathways through 2100, subject to best-available parameterization of carbon-climate feedbacks and interdependencies. We find that, barring unforeseen and transformative technological advancement, anthropogenic emissions need to peak within the next 10 years, to maintain realistic pathways to meeting the COP21 emissions and warming targets. Fossil fuel consumption will probably need to be reduced below a quarter of primary energy supply by 2100 and the allowable consumption rate drops even further if negative emissions technologies remain technologically or economically unfeasible at the global scale

    A new look at an old dog : Bonn-Oberkassel reconsidered

    Get PDF
    The Bonn-Oberkassel dog remains (Upper Pleistocene and 14223 þ- 58 years old) have been reported more than 100 years ago. Recent re-examination revealed the tooth of another older and smaller dog, making this domestic dog burial not only the oldest known, but also the only one with remains of two dogs. This observation brings the total known Magdalenian dogs to nine. Domestication of dogs during the final Palaeolithic has important implications for understanding pre- Holocene hunter-gatherers. Most proposed hunter-gatherer motivations for domesticating dogs have been utilitarian. However, remains of the Bonn-Oberkassel dogs may offer another view. The Bonn-Oberkassel dog was a late juvenile when it was buried at approximately age 27e28 weeks, with two adult humans and grave goods. Oral cavity lesions indicate a gravely ill dog that likely suffered a morbillivirus (canine distemper) infection. A dental line of suggestive enamel hypoplasia appears at the 19-week developmental stage. Two additional enamel hypoplasia lines, on the canine only, document further disease episodes at weeks 21 and 23. Pathological changes also include severe periodontal disease that may have been facilitated by immunodeficiency. Since canine distemper has a three-week disease course with very high mortality, the dog must have been perniciously ill during the three disease bouts and between ages 19 and 23 weeks. Survival without intensive human assistance would have been unlikely. Before and during this period, the dog cannot have held any utilitarian use to humans. We suggest that at least some Late Pleistocene humans regarded dogs not just materialistically, but may have developed emotional and caring bonds for their dogs, as reflected by the survival of this dog, quite possibly through human care

    High optical contrast nanoimprinted speckle patterns for digital image correlation analysis

    Get PDF
    For the characterization of the mechanical deformation of materials at microscopic length scales, image processing of a high-quality surface pattern was used. We imprinted speckle patterns onto a thin polymer film attached to the surface of flat and curved metal substrates using flexible molds and soft-thermal nanoimprint lithography. High optical contrast was achieved by mixing black dye into the film generating high absorption in the elevated structures, and by adding titania nanoparticles as fillers to the recessed areas to induce diffuse scattering. For accessing resolution suitable to detect deformation at an individual grain level, the structure sizes were scaled down from 20 μm to 2 μm. For both structure sizes imaging was tested using a digital image correlation setup, that enables 3D imaging of samples with angles of up to 10° of inclination

    Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    Get PDF
    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif

    The bioelements, the elementome and the "biogeochemical niche"

    Get PDF
    Every living creature on Earth is made of atoms of the various bioelements that are harnessed in the construction of molecules, tissues, organisms, and communities, as we know them. Organisms need these bioelements in specific quantities and proportions to survive and grow. Distinct species have different functions and life strategies, and have therefore developed distinct structures and adopted a certain combination of metabolic and physiological processes. Each species is thus also expected to have different requirements for each bioelement. We therefore propose that a "biogeochemical niche" can be associated with the classical ecological niche of each species. We show from field data examples that a biogeochemical niche is characterized by a particular elementome defined as the content of all (or at least most) bioelements. The differences in elementome among species are a function of taxonomy and phylogenetic distance, sympatry (the bioelemental compositions should differ more among coexisting than among non-coexisting species to avoid competitive pressure), and homeostasis with a continuum between high homeostasis/low plasticity and low homeostasis/high plasticity. This proposed biogeochemical niche hypothesis has the advantage relative to other associated theoretical niche hypotheses that it can be easily characterized by actual quantification of a measurable trait: the elementome of a given organism or a community, being potentially applicable across taxa and habitats. The changes in bioelemental availability can determine genotypic selection and therefore have a feedback on ecosystem function and organization, and, at the end, become another driving factor of the evolution of life and the environment

    On the representation of IAGOS/MOZAIC vertical profiles in chemical transport models:contribution of different error sources in the example of carbon monoxide

    Get PDF
    Utilising a fleet of commercial airliners, MOZAIC/IAGOS provides atmospheric composition data on a regular basis that are widely used for modelling applications. Due to the specific operational context of the platforms, such observations are collected close to international airports and hence in an environment characterised by high anthropogenic emissions. This provides opportunities for assessing emission inventories of major metropolitan areas around the world, but also challenges in representing the observations in typical chemical transport models. We assess here the contribution of different sources of error to overall modeldata mismatch using the example of MOZAIC/IAGOS carbon monoxide (CO) profiles collected over the European regional domain in a time window of 5 yr (20062011). The different sources of error addressed in the present study are: 1) mismatch in modelled and observed mixed layer height; 2) bias in emission fluxes and 3) spatial representation error (related to unresolved spatial variations in emissions). The modelling framework combines a regional Lagrangian transport model (STILT) with EDGARv4.3 emission inventory and lateral boundary conditions from the MACC reanalysis. The representation error was derived by coupling STILT with emission fluxes aggregated to different spatial resolutions. We also use the MACC reanalysis to assess uncertainty related to uncertainty sources 2) and 3). We treat the random and the bias components of the uncertainty separately and found that 1) and 3) have a comparable impact on the random component for both models, while 2) is far less important. On the other hand, the bias component shows comparable impacts from each source of uncertainty, despite both models being affected by a low bias of a factor of 22.5 in the emission fluxes. In addition, we suggested methods to correct for biases in emission fluxes and in mixing heights. Lastly, the evaluation of the spatial representation error against modeldata mismatch between MOZAIC/IAGOS observations and the MACC reanalysis revealed that the representation error accounts for roughly 1520% of the modeldata mismatch uncertainty

    Processing of blood samples influences PBMC viability and outcome of cell-mediated immune responses in antiretroviral therapy-naïve HIV-1-infected patients

    Get PDF
    AbstractIntracellular cytokine staining (ICS) assay is increasingly used in vaccine clinical trials to measure antigen-specific T-cell mediated immune (CMI) responses in cryopreserved peripheral blood mononuclear cells (PBMCs) and whole blood. However, recent observations indicate that several parameters involved in blood processing can impact PBMC viability and CMI responses, especially in antiretroviral therapy (ART)-naïve HIV-1-infected individuals.In this phase I study (NCT01610427), we collected blood samples from 22 ART-naïve HIV-1-infected adults. PBMCs were isolated and processed for ICS assay. The individual and combined effects of the following parameters were investigated: time between blood collection and PBMC processing (time-to-process: 2, 7 or 24h); time between PBMC thawing and initiation of in vitro stimulation with HIV-1 antigens (resting-time: 0, 2, 6 and 18h); and duration of antigen-stimulation in PBMC cultures (stimulation-time: 6h or overnight). The cell recovery after thawing, cell viability after ICS and magnitude of HIV-specific CD8+ T-cell responses were considered to determine the optimal combination of process conditions. The impact of time-to-process (2 or 4h) on HIV-specific CD8+ T-cell responses was also assessed in a whole blood ICS assay.A higher quality of cells in terms of recovery and viability (up to 81% and >80% respectively) was obtained with shorter time-to-process (less than 7h) and resting-time (less than 2h) intervals. Longer (overnight) rather than shorter (6h) stimulation-time intervals increased the frequency of CD8+-specific T-cell responses using ICS in PBMCs without change of the functionality. The CD8+ specific T-cell responses detected using fresh whole blood showed a good correlation with the responses detected using frozen PBMCs.Our results support the need of standardized procedures for the evaluation of CMI responses, especially in HIV-1-infected, ART-naïve patients

    Aquaporin expression in blood-retinal barrier cells during experimental autoimmune uveitis

    Get PDF
    PURPOSE: Blood-retinal barrier (BRB) breakdown and retinal edema are major complications of autoimmune uveitis and could be related to deregulation of aquaporin (AQP) expression. We have therefore evaluated the expression of AQP1 and AQP4 on BRB cells during experimental autoimmune uveitis (EAU) in mice. METHODS: C57Bl6 mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) peptide 1-16. The disease was graded clinically, and double immunolabeling using glial fibrillary acidic protein (GFAP; a marker of disease activity) and AQP1 or AQP4 antibodies was performed at day 28. AQP1 expression was also investigated in mouse retinal pigment epithelium (RPE) cells (B6-RPE07 cell line) by reverse transcriptase PCR and western blot under basal and tumor necrosis factor alpha (TNF-alpha)-stimulated conditions. RESULTS: In both normal and EAU retina, AQP1 and AQP4 expression were restricted to the photoreceptor layer and to the Müller cells, respectively. Retinal endothelial cells never expressed AQP1. In vasculitis and intraretinal inflammatory infiltrates, decreased AQP1 expression was observed due to the loss of photoreceptors and the characteristic radial labeling of AQP4 was lost. On the other hand, no AQP4 expression was detected in RPE cells. AQP1 was strongly expressed by choroidal endothelial cells, rendering difficult the evaluation of AQP1 expression by RPE cells in vivo. No major differences were found between EAU and controls at this level. Interestingly, B6-RPE07 cells expressed AQP1 in vitro, and TNF-alpha downregulated AQP1 protein expression in those cells. CONCLUSIONS: Changes in retinal expression of AQP1 and AQP4 during EAU were primarily due to inflammatory lesions, contrasting with major modulation of AQP expression in BRB detected in other models of BRB breakdown. However, our data showed that TNF-alpha treatment strongly modulates AQP1 expression in B6-RPE07 cells in vitro.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Circumsporozoite-specific T cell responses in children vaccinated with RTS,S/AS01 E and protection against P falciparum clinical malaria

    Get PDF
    Background:RTS,S/AS01E is the lead candidate pre-erythrocytic malaria vaccine. In Phase IIb field trials the safety profile was acceptable and the efficacy was 53% (95%CI 31%–72%) for protecting children against clinical malaria caused by P. falciparum. We studied CS-specific T cell responses in order to identify correlates of protection.Methods and Findings:We used intracellular cytokine staining (for IL2, IFNγ, and TNFα), ex-vivo ELISPOTs (IFNγ and IL2) and IFNγ cultured ELISPOT assays to characterize the CS-specific cellular responses in 407 children (5–17 months of age) in a phase IIb randomized controlled trial of RTS,S/AS01E (NCT00380393). RTS,S/ AS01E vaccinees had higher frequencies of CS-specific CD4+ T cells producing IFNγ, TNFα or IL2 compared to control vaccinees. In a multivariable analysis TNFα+ CD4+ T cells were independently associated with a reduced risk for clinical malaria among RTS,S/AS01E vaccinees (HR = 0.64, 95%CI 0.49–0.86, p = 0.002). There was a non-significant tendency towards reduced risk among control vaccinees (HR = 0.80, 95%CI 0.62–1.03, p = 0.084), albeit with lower CS-specific T cell frequencies and higher rates of clinical malaria. When data from both RTS,S/AS01E vaccinees and control vaccinees were combined (with adjusting for vaccination group), the HR was 0.74 (95%CI 0.62–0.89, p = 0.001). After a Bonferroni correction for multiple comparisons (n-18), the finding was still significant at p = 0.018. There was no significant correlation between cultured or ex vivo ELISPOT data and protection from clinical malaria. The combination of TNFα+ CD4+ T cells and anti-CS antibody statistically accounted for the protective effect of vaccination in a Cox regression model.Conclusions:RTS,S/AS01E induces CS-specific Th1 T cell responses in young children living in a malaria endemic area. The combination of anti-CS antibody concentrations titers and CS-specific TNFα+ CD4+ T cells could account for the level of protection conferred by RTS,S/AS01E. The correlation between CS-specific TNFα+ CD4+ T cells and protection needs confirmation in other datasets
    • …
    corecore