81 research outputs found

    Med Student Fitness: A Survey on Exercise Habits during Medical Education

    Get PDF
    Med Student Fitness\u27 investigates the exercise habits of students at NYMC. In particular, this survey compares the amount of cardiovascular and weightlifting workouts that students perform each week, as well as differences in gender, age, and year of program. Finally, an assessment of overall student fitness is given by the amount of students meeting the exercise suggestions provided by the American Medical Association

    Measuring the Abundance of Sub-kilometer-sized Kuiper Belt Objects Using Stellar Occultations

    Get PDF
    We present here the analysis of about 19,500 new star hours of low ecliptic latitude observations (|b| ≀ 20°) obtained by the Hubble Space Telescope's Fine Guidance Sensors over a time span of more than nine years, which is in addition to the ~12, 000 star hours previously analyzed by Schlichting et al. Our search for stellar occultations by small Kuiper Belt Objects (KBOs) yielded one new candidate event corresponding to a body with a 530 ± 70 m radius at a distance of about 40 AU. Using bootstrap simulations, we estimate a probability of ≈5% that this event is due to random statistical fluctuations within the new data set. Combining this new event with the single KBO occultation reported by Schlichting et al. we arrive at the following results: (1) the ecliptic latitudes of 6Âș.6 and 14Âș.4 of the two events are consistent with the observed inclination distribution of larger, 100-km-sized KBOs. (2) Assuming that small, sub-kilometer-sized KBOs have the same ecliptic latitude distribution as their larger counterparts, we find an ecliptic surface density of KBOs with radii larger than 250 m of N(r > 250 m) = 1.1^(+1.5)_(–0.7) × 10^7 deg^(–2); if sub-kilometer-sized KBOs have instead a uniform ecliptic latitude distribution for –20° 250 m) = 4.4^(+5.8)_(–2.8) × 10^6 deg^(–2). This is the best measurement of the surface density of sub-kilometer-sized KBOs to date. (3) Assuming the KBO size distribution can be well described by a single power law given by N(> r) ∝ r^(1–q) , where N(> r) is the number of KBOs with radii greater than r, and q is the power-law index, we find q = 3.8 ± 0.2 and q = 3.6 ± 0.2 for a KBO ecliptic latitude distribution that follows the observed distribution for larger, 100-km-sized KBOs and a uniform KBO ecliptic latitude distribution for –20° 4.0 at 2σ, confirming a strong deficit of sub-kilometer-sized KBOs compared to a population extrapolated from objects with r > 45 km. This suggests that small KBOs are undergoing collisional erosion and that the Kuiper Belt is a true analog to the dust producing debris disks observed around other stars

    Radio Astronomy

    Get PDF
    Contains reports on eleven research projects.National Science Foundation (Grant AST79-25075)National Science Foundation (Grant AST79-20984)National Science Foundation (Grant AST79-19553)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0348)National Aeronautics and Space Administration (Grant NAG2-50)MIT Sloan Fund for Basic ResearchJoint Services Electronics Program(Contract DAAG80-C-0104)Lockheed Aircraft Corporation (Contract LS90B4860F)National Aeronautics and Space Administration (Grant NAG5-10)National Aeronautics and Space Administration (Contract NAS5-22929)U.S. Department of Commerce, National Oceanic and Atmospheric Administration (Grant 04-8-MO1-1)California Institute of Technology Jet Propulsion Laboratory (Contract LZ-727891)California Institute of Technology Jet Propulsion Laboratory Subcontract 956059California Institute of Technology Jet Propulsion Laboratory Task Order RD-15

    PTF11eon/SN2011dh: Discovery of a Type IIb Supernova From a Compact Progenitor in the Nearby Galaxy M51

    Get PDF
    On May 31, 2011 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras, as well as by the Palomar Transient Factory (PTF) survey, and rapidly confirmed it to be a Type II supernova. Our early light curve and spectroscopy indicates that PTF11eon resulted from the explosion of a relatively compact progenitor star as evidenced by the rapid shock-breakout cooling seen in the light curve, the relatively low temperature in early-time spectra and the prompt appearance of low-ionization spectral features. The spectra of PTF11eon are dominated by H lines out to day 10 after explosion, but initial signs of He appear to be present. Assuming that He lines continue to develop in the near future, this SN is likely a member of the cIIb (compact IIb; Chevalier and Soderberg 2010) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~10^13 cm) would be highly inconsistent with constraints from our post-explosion photometric and spectroscopic data

    Radio Astronomy

    Get PDF
    Contains reports on sixteen research projects.National Science Foundation (Grant AST81-21416)National Science Foundation (Grant AST80-22864)National Aeronautics and Space Administration (Contract S-10665-C)National Aeronautics and Space Administration (Contract NAGW373)National Science Foundation (Grant AST79-19553)National Oceanic and Atmospheric Administration (Grant 04-8-M01-1)National Aeronautics and Space Administration (Grant NAG5-10)National Aeronautics and Space Administration (Contract NAS5-22929)Defense Advanced Research Projects Agency (Contract MDA 903-82-K-0521)Intelsat (Contract Intel-188)Joint Services Electronics Program (Contract DAAG29-80-C-0104)Lockheed Missiles and Space Company (Contract LS90B4860F

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    • 

    corecore