50 research outputs found

    Algorithms for Big Data: Graphs and PageRank

    Get PDF
    This work consists of a study of a set of techniques and strategies related with algorithm's design, whose purpose is the resolution of problems on massive data sets, in an efficient way. This field is known as Algorithms for Big Data. In particular, this work has studied the Streaming Algorithms, which represents the basis of the data structures of sublinear order o(n)o(n) in space, known as Sketches. In addition, it has deepened in the study of problems applied to Graphs on the Semi-Streaming model. Next, the PageRank algorithm was analyzed as a concrete case study. Finally, the development of a library for the resolution of graph problems, implemented on the top of the intensive mathematical computation platform known as TensorFlow has been started.Comment: in Spanish, 143 pages, final degree project (bachelor's thesis

    Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination

    Get PDF
    Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR–CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR–CD3 complexes. We found that only TCR–CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR–pMHC affinity determined the density of TCR–CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR–CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination

    Cellular anatomy of the mouse primary motor cortex.

    Get PDF
    An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture

    Comparative cellular analysis of motor cortex in human, marmoset and mouse

    Get PDF
    The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Widefield fluorescence correlation spectroscopy

    Get PDF
    Fluorescence correlation spectroscopy has become a standard technique for modern biophysics and single molecule spectroscopy research. Here is presented a novel widefield extension of the established single-point technique. Flow in microfluidic devices was used as a model system for microscopic motion and through widefield fluorescence correlation spectroscopy flow profiles were mapped in three dimensions. The technique presented is shown to be more tolerant to low signal strength, allowing image data with signal-to-noise values as low as 1.4 to produce accurate flow maps as well as utilizing dye-labeled single antibodies as flow tracers. With proper instrumentation flows along the axial direction can also be measured. Widefield fluorescence correlation spectroscopy has also been utilized to produce super-resolution confocal microscopic images relying on the single-molecule microsecond blinking dynamics of fluorescent silver clusters. A method for fluorescence modulation signal extraction as well as synthesis of several novel noble metal fluorophores is also presented.Ph.D.Committee Chair: Dickson, Robert; Committee Member: Christoph Fahrni; Committee Member: El-Sayed, Mostafa; Committee Member: Lyon, Andrew; Committee Member: Srinivasarao, Moha

    Data from: Developmental diet irreversibly shapes male post-copulatory traits in the neriid fly (Telostylinus angusticollis)

    No full text
    Nutrient availability has been shown to influence investment in many fitness related traits, including male reproductive success. Many studies have demonstrated that a reduction in nutrient availability alters male post-copulatory trait expression, with some studies demonstrating an effect of developmental nutrients and others, an effect of adult nutrients. However, few studies have manipulated both developmental and adult nutrients in the same experiment. Therefore, it is not clear what life-stage has the greatest effect on post-copulatory trait expression, and if the effects of developmental and adult nutrients can interact. Here, we investigate effects of developmental and adult nutrition on male testes and accessory gland size, sperm movement within the female reproductive tract and sperm length in the neriid fly, Telostylinus angusticollis. We found that males fed a nutrient-poor developmental diet produced sperm with a reduced tail beat frequency and had smaller testes and accessory glands compared to males fed a nutrient-rich developmental diet. In contrast, we found no effects of adult nutrition on any traits measured, while sperm length was correlated with body size and male age but unaffected by nutrition at any stage. Therefore, investment in adult post-copulatory traits is determined early on by developmental nutrients in male neriid flies, and this effect is not altered by adult nutrient availability

    Quantitative visualization of endocytic trafficking through photoactivation of fluorescent proteins

    No full text
    Endocytic trafficking controls the density of molecules at the plasma membrane and by doing so, the cell surface profile, which in turn determines how cells interact with their environment. A full apprehension of any cellular process necessitates understanding how proteins associated with the plasma membrane are endocytosed, how they are sorted after internalization, and if and how they are recycled to the plasma membrane. To date, it is still difficult to experimentally gain access to this information, even more to do it in a quantitative way. Here we present a toolset based on photoactivation of fluorescent proteins that enabled us to generate quantitative information on endocytosis, incorporation into sorting and recycling endosomes, delivery from endosomes to the plasma membrane, and on the type of vesicles performing intracellular transport. We illustrate these approaches by revealing striking differences in the endocytic trafficking of T-cell receptor and CD4, which bind to the same molecule at the surface of antigen-presenting cells during T-cell activation.publishe
    corecore