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SUMMARY

The focus of this thesis the use of image series data as spatially-separated

time series data. The utilization of correlation techniques to analyze this time series

data yields important results regarding the systems in question. A large portion of

this work relies on microfluidic devices as model systems for microscopic motion to

develop the analysis methods presented.

Through the use of pixel-pair cross correlation mapping the flow in a three-

dimensional volume in a microfluidic device was measured. When used in conjuction

with a Nipkow disk confocal scanner this method allows for the rapid acquisition and

analysis of flow speeds in an entire volume of interest within a microfluidic device.

Simulations indicate that the correlation analysis technique is more tolerant to a high-

noise environment than comparable particle tracking procedures, allowing data from

images with S/N values as low as 1.4 to yield accurate flow maps with sufficient data

length. This result indicates a compatability with smaller, dimmer fluorescent probes

for flow mapping and to that effect fluorescently-labelled single antibodies have been

used to map flow in a microfluidic channel. For results presented here flow speeds of

hundreds of micrometers per second are presented but with appropriate experimental

conditions flow speeds of tens of millimeters per second are compatable with this

method.

Extending this technique to operate on multiple pixels surrounding a central origin

allows for the fitting of a full flow vector from image series data. The correlation

amplitude between a pair of pixels follows a sin2 dependence on the angle between the

flow vector and spacing vector connecting the two pixels. By fitting an experimentally-

determined correlation amplitude map for a subregion of the area of interest the
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flow vector in that local area can be accurately determined. This method has been

successfully applied to mapping flow around a partial obstruction and in the entrance

of a microfluidic channel. Experimental and simulated data demonstrate that the full

flow vector can be accurately computed for an arbitrary direction with speeds up to

a few hundred micrometers per second.

The correlation amplitude maps have been utilized to determine the axial, out-of-

plane flow angle as well. This axial-angle fitting method relies on the same Nipkow

spinning disk confocal scanner and additional a piezo nosepiece capable of rapidly

switching between multiple focal planes. As a result synchronous time-series data

from multiple focal planes can be used to produce correlation amplitude maps that

express both the planar and axial motion of flow. Single-plane techniques are able to

only fit the in-plane projection of the three-dimensional flow vector while the method

presented here allows for the axial contribution to be quantified as well. This method

has been shown to accurately measure axial flow angles in simulated data as well as

map the flow vectors in microfluidic devices showing large amounts of axial motion.

Spatially-separated time series data central to the flow mapping techniques can

also be used to generate images in other experimental modalities. For optically-

modulatable fluorophores, mapping the power of the modulation frequency yields a

demodulated image with selective enhancement of the modulatable fluorophore over

an obscuring constant background. A synthetic route to generate polystyrene beads

labelled with Rose Bengal, a modulatable organic dye, for use as a modulatable probe

is presented here. In additon, the use of higher-order statistics on time-series data of

stochastic fluorophore blinking can be used to generate super-resolution images. This

technique has been extended to demostrate its capacity for super-resolution images

beyond relying on quantum dots and allowing imaging with emitters that blink on

timescales faster than can be obtained with CCD-based acquisitions. As such, the use

of higher-order statistical analysis on confocal image data utilizing the microsecond
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blinking timescales of DNA:Ag nanoclusters to generate super-resolution images has

been experimentally demonstrated.

In order to improve the quality of imaging there have been several novel noble-

metal based fluorophores synthesized and characterized. Light-activated emissive

silver nanoparticles templated with synthetic tyrosine-containing peptides have been

presented. These particles are extremely bright and show enhanced Raman signals at

the level of single diffusing particles. The use of tyrosine derivatives as reducing agents

for silver clusters has been further investigated, resulting in several new fluorophores of

sizes comparable to organic dyes. Finally, orange-emitting gold-glutathione particles

of sizes less than 5 nm have been synthesized.

As microscopy techniques become more advanced, the subsequent techniques

in data analysis and fluorescent probes must also continue to improve. Here has

been presented novel methods for analyzing image stacks as a collection of spatially-

distrubuted time series data in conjuction with correlations to yield a wide variety of

results. These methods can be easily adapted to operate on a wide range of experi-

mental systems, including live cells or whole organisms. With the increased used of

such advanced image analysis techniques it is hoped that long-held secrets in micro-

scopic phenomena can be revealed.
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CHAPTER I

INTRODUCTION

1.1 Motivation

From the invention of the optical microscope, scientists have continued to steadily de-

crease the size of the objects they wish to observe [2, 3, 4]. Starting with multicellular

organisms seen in pond water down through eukaryotic cells and bacteria towards the

current interest in nanotechnology and even individual molecules, the frontier of the

small has been pushed to the conceivable limits of what many can imagine. And

as the observations focus on smaller and smaller things the necessary techniques to

study such minute features become more and more difficult.

As a research tool, the optical microscope is both powerful and widely applicable

for studying features smaller than the naked eye can detect. Optical microscopy is

largely non-invasive and non-destructive, in comparison to electron microscopy or

atomic force microscopy, and so is particularly suited for living or biological systems

[5, 6, 7]. A multitude of techniques - staining, polarimetry, etc. - have been devised to

deal with the many challenges assosicated with observing those things that naturally

do not differentiate themselves from the background, but one of the most powerful of

these is fluorescence microscopy.

Fluorescence microscopy relies on labelling the objects of interest with a substance,

known as a dye, that fluoresces - that is, it will absorb and then subsequently re-emit

a photon [8]. There are a large range of fluorescent dyes with different chemical

and photophysical characteristics, allowing for specific and differentiable labelling of

targets such as subcellular structures or microscopic devices. Very sensitive detectors

in different architectures exist to measure down to single fluorescing molecules [9, 10,
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11, 12, 13]. At the same time, the vast majority of the substances in nature do not

fluoresce, allowing for an experiment with low background relative to the signal from

the flourescent dye.

Historically the largest effort has been on using microscopy, fluorescence and oth-

erwise, to study static objects. With advances in imaging and processing technol-

ogy the focus has shifted towards using microscopy to measure dynamic processes

[14, 15, 16, 17, 18]. Many interesting applications exist for determining dynamics on

a microscopic scale such as vesicle trafficing in live cells [19, 20], or fluid motion in

microfluidic devices [21, 22, 23, 24, 25, 26, 27]. In order to address the shortcomings

in current methods new techniques must be developed.

This work focuses on the use of cross-correlation spectroscopy in a widefield config-

uration to rapidly measure various dynamic microscopic processes in a manner that

is robust towards low signal strengths and is generally applicable to a wide range

of systems. Here fluid motion in microfluidic devices is used as a model system to

develop a method of determing flow profiles in both two and three dimensions. It

is also shown that this method is easily adaptable to utilize dual laser fluorescence

modulation for widefield signal extraction as well as exploiting the native fluorescence

intermittancy of single molecules for imaging below the diffraction limit of light.

1.2 Fluorescence Spectroscopy

Fluorescence spectroscopy utilizes the ability of certain molecules and materials to

absorb (excitation) and later emit (emission) a photon of light. Many materials of

different types, including conjugated organic molecules [28, 29], metal clusters [30, 31],

semiconductor quantum dots [7, 32], and fluorescent proteins [10, 33], collectively

known as, ‘fluorescent dyes,’ or simply, ‘dyes,’ will undergo this process when exposed

to near-UV through near-IR light, depending on the specific material.

Aside from the color of the light associated with the transition, the most important
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parameter for experimental consideration is the brightness (B) of the dye, defined as

the number of photons emitted per second under a given amount of excitation, and

is a combination of three other parameters - excitation cross-section (ϵ), fluorescence

quantum yield (Φ), and natural radiative lifetime (τ).

B =
ϵ ∗ Φ
τ

(1)

Excitation cross-section describes the probability of a molecule absorbing an in-

cident photon, in units of M−1cm−1. Once a photon is absorbed and a molecule is

in the excited state, the fluorescence quantum yield describes the probability that an

excited-state molecule will emit a photon, versus all other decay processes, while flu-

orescence lifetime describes the timescale of this process. Typical organic dyes have

excitation cross-sections on the order of 50,000 to 200,000 M−1cm−1, fluorescence

quantum yields of 0.1-0.9, and lifetimes on the order of 1-10 ns [29, 8, 28].

For a single-photon process the number of photons emitted depends linearly on

the excitation intensity. The actual number of photons detected versus emitted in a

given experimental configuration further depends on the collection efficiency of the

experimental geometry, the transmission of any optics, including spectral filters, in

the light path, as well as the quantum efficiency of the detector [34, 35].

While experiments on bulk materials do elucidate a large number of the photo-

physical properties of a material, on the microscopic scale the properties of single

molecules become more and more important. While a bulk sample may give a con-

stant emission intensity under constant excitation, a single molecule can experience

fluorescence intermittancy, commonly referred to as ‘blinking.’ In this a molecule

will typically give a constant emission intensity for a given amount of time, then

no emission, only for the emission to return at some later time [10, 36, 30, 37]. In

organic dyes this corresponds to an electron which typically radiatively decays from

the singlet excited state to the singlet ground state, resulting in fluorescence, instead

3



goes through an intersystem crossing to a triplet state. The triplet state will decay

nonradiatively back to the singlet excited state on a timescale much longer than the

fluorescence lifetime [38, 39, 40]. Quantum dots experience a similar phenomenon,

but is attributed to a charge separation in the electron-hole pair [41, 42, 43]. For

organic molecules this process happens on the microsecond timescale while other

materials such as semiconductor quantum dots have blinking dynamics on all exper-

imental timescales. Generally the blinking is seen as a disadvantage as it decreases

the overall emission intensity and the blinking dynamics can obscure other dynamic

processes on similar timescales. However, there are techniques that rely on the native

or experimentally-influenced blinking dynamics to extract or enhance the signal from

intermittently-emitting fluorophores [44, 45].

In addition to blinking, fluorescent molecules under exciting illumination will ex-

perience photobleaching [46, 47, 48, 49]. For bulk signals this can be seen as an

exponental decay in the emission over time but for single molecules this bleaching

occurs in a single irreversable event. For organic dyes this bleaching event is often

attributed to a highly-reactive triplet excited state which readily reacts with oxygen

(which is in a triplet ground state), resulting in a non-fluorescent product [50]. Care

can be taken to eliminate oxygen from solution to reduce photobleaching but typical

organic dyes still only can remain emissive for tens of seconds or less before bleaching

[51, 52, 39]. This largely limits the number of photons, and therefore information,

that can be acquired from a single molecule.

Efforts to improve upon the photophysical characteristics of available fluorophores

continue. A straight-forward way of improving the number of photons from a single

particle is simply to tie a large number of particles together, often by prolifically

labelling the surface of a functionalized polystyrene bead [53, 54]. This methodology

does require that the experiment can tolerate fluorescent particles of much larger size

- 100 nm or more in diameter versus 1 nm diameter of a single molecule. However,
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for simply improving the brightness of the observed particles this method is widely

useful, and in some applications the increased size is an advantage for limiting diffusive

motion.

1.3 Correlation Spectroscopy

Initially developed by Magde and Elson in 1974, Fluorescence Correlation Spec-

troscopy (FCS) has proven to be a remarkably useful and widely applicable spec-

troscopic method in recent years [55, 56, 57, 58]. Thanks to advances in optics,

detectors, and computer timing, processes operating on the microsecond timescale

are easily detectable with single molecule sensitivity.

In the modern implementation of this technique, a excitation laser is tightly fo-

cused into a diffraction-limited spot with a Gaussian-bounded volume of tens of fem-

toliters or less. Emission from this spot is passed through a spatial filter (pinhole or

small optical fiber) and continues along to a single-photon detector (avalanche pho-

todiode (APD) or photomultiplier tube (PMT)) and then to a computer-controlled

single photon counting module or correlator board. The resulting correlation curve

generated from the data can then be used to determine physical parameters about

the system.

Fluorescence Cross-Correlation Spectroscopy (FCCS) is performed in an analagous

manner, but two or more focal spots are used instead of the single focal spot in FCS

[59, 21, 22, 60]. This is often accomplished with the use of optics that separate the

excitation beam into two spots based on their polarization, with a dual-core optical

fiber, or simply using two simultaneous lasers. Detection is accomplished by splitting

the emission signal onto two detectors. The two spots can be spatially or spectrally

displaced (i.e., two different wavelength lasers), the latter case proving particularly

useful in co-localization and association studies. In this thesis, ‘cross-correlation’ will

connotate correlation analysis of signals arising from different points in space.
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Fluorescence correlation analysis can be used to investigate any process giving

rise to a fluctuation in the detected fluorescence signal. Because of this generality,

the technique has proven to be quite powerful and in recent years has been used to

investigate a wide range of physical processes, including diffusion, flow, dark state

processes, aggregation, and chemical isomerization.

Fluorescence correlation spectroscopy uses the fluctuations of the fluorescence

signal at time t about the mean fluorescence intensity, given by

δF (t) = F (t)− < F > (2)

where the brackets indicate an average over time [55, 56, 57, 58]. These fluctuations

through time can be used to generate the correlation function

G(τ) =
< δIa(t) (δIb(t+ τ)) >

< Ia >< Ib >
=

< Ia(t) (Ib(t+ τ)) >

< Ia >< Ib >
− 1 (3)

in which Ix(t) indicates the fluorescence intensity at time t at position x and < Ix >

is the mean intensity over time at position x. In the case that a = b, meaning that

a single intensity vs. time trace is correlated against itself, this is known as the

autocorrelation. The converse, a ̸= b, indicates two distinct intensity vs. time traces

and is known as the cross-correlation. These correlation curves can be expressed in

terms of physical parameters (diffusion coefficient, triplet lifetime, flow time, etc.),

depending on the exact system under investigation. Such equations will be discussed

in relevant later chapters.

For autocorrelation curves, the function is at its highest at zero delay (τ = 0), or

where the signal is correlated with its exact copy. At infinite time the correlation is at

the minimum asymptotic value, indicating two intensity traces that are uncorrelated

at that offset. Between these two extremes the curve decays from the maximum to

minimum at some offset, τ . It is this τ that is the timescale indicative of the process

giving rise to the fluctuations. In additon, the amplitude of the fluctuation can, in
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general, be related to the number of molecules undergoing that process at one time,

averaged through the time of the measurement.

Similar parameters can be extracted from a cross-correlation as an autocorrela-

tion, but with the added functionality from the spatial displacement of the two focal

volumes. The only fluctuations that will give rise to a cross-correlation are those

generated from the same event, meaning that between two intensity vs. time traces,

only those events that give rise to signal in both channels will be correlated.

Many extensions of the typical FCS or FCCS technique have been reported, each

to solve a particular issue with the fundamental method. The largest drawback

of the single-point or even dual-point measurements provided by FCS and FCCS,

respectively, is the limited spatial volume that is probed in a single experiment. In

order to increase the number of locations investigated other groups have used scanning

lasers [61, 62, 63], CCD detectors [64, 65], or pinhole arrays [66], or spinning disk

confocal units [67]. It is this final method that this work improves upon to measure

flow speeds in microfluidic devices.

1.4 Confocal Microscopy

Confocal microscopy has risen to the position of an indespensible tool for microbiology

[68, 69]. In traditional widefield fluorescence microscopy the entire field of view is

illuminated at one time and the subsequent emission is recorded on a CCD or other

photodetector. This results in a large amount of signal coming from out-of-focus

planes and a comparatively blurry image. In a confocal setup the excitation and

emission light pass through apertures (pinholes) at focal planes conjugate to the

sample. These pinholes reject light that comes from other focal planes above and

below the area of interest and result in an increase in resolution in both the lateral,

and particularly, axial directions. Resulting images are much clearer with greater

contrast and less out-of-focus light obscuring fine features [69].
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This technique lends itself well to imaging three-dimensional samples because of

the natural ability to optically section the sample at different focal depths. This

feature, combined with the noninvasive imaging method given by fluorescence mi-

croscopy, makes confocal microscopy particularly useful in imaging biological samples

including live cells [69]. It follows that a confocal microscope is ubiquitous amongst

institutions engaging in microbiological research.

While confocal microscopy is a powerful technique, there are some drawbacks. In

addition to the universal limitations of optical and fluorescence microscopy there are

other concerns with confocal microscopy. Because only a single point is imaged at

any one time the focal point must be repositioned relative to the sample with either a

scanning stage, or, more commonly in modern systems, programmable mirrors in the

optical path. This serial data acquisition is more time-consuming than the parallel

acquistion possible with multi-point detectors which limits the temporal resolution

that can be achieved [70, 71, 72]. While the pinhole effectively constrains the amount

of extraneous light, the amount of excitation and emission light transmitted through

the small apertures constrict the amount of signal generated and results in longer

acquisition times relative to widefield fluorescence microscopy [72].

The limitation of acquisition rates is particularly troublesome here where flow

rates in microfluidic devices are to be measured. In order to overcome this problem

a modification of the single-point confocal system has been developed. An apparatus

containing a Nipkow spinning disk is utilized that rapidly acquires images across a

wide area laterally but constrained axially [73, 74]. The Nipkow disk is an array of

pinholes that when stationary act as parallel confocal volumes across a wide field

of view. By rapidly rotating the disk with image acquisition times longer than the

rotation period the pinholes trace out a confocal volume across the entire field of

view. As a result confocal images for a single focal plane can be collected in a rapid

fashon on a CCD detector, allowing for more temporal resolution than is typically
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possible with a single-point confocal system [75, 71, 70]. The instrument utilized in

this work is covered in more detail in section 2.5.

1.5 Measuring Microscopic Motion

Quantifying motion on a microscopic scale continues to be an important challenge.

As devices and systems of interest decrease in size, such as the trend from microflu-

idics to so-called, ‘nanofluidics,’ the issues involved with performing measurements

at such small length scales will often be compounded. When applied specifically to

the measure of velocities in fluids the measurement is known as velocimetry, of which

there exist many different techniques [76, 77, 78, 79]. In this thesis the focus will

remain on optical techniques for measuring velocities in microscopic systems.

While it is, in fact, the motion of the fluid that is of interest, rarely is the motion

of the fluid (often a common solvent, such as water) actually visible. In order to

visualize the motion of the fluid, certain impurities are added that are visible. Con-

tinuing on the strengths of fluorescence microscopy, these impurities are often a small

concentration of fluorescent dye or particles whose fluorescence can be imaged on a

camera or other photodector [80]. These visible fluorescent impurities are commonly,

interchangeably, and henceforth, known as, ‘tracers’, ‘beads’, and, ‘particles’.

Of the fluorescence velocimetry methods, the most straightforward to understand

is Particle Tracking Velocimetry (PTV) [81, 82]. In this technique, a particle is

identified over the background in succesive frames of an image stack. Through one of

many mathematical techniques the average displacement of the particles between the

succesive frames can be determined and mapped as a function of position or time.

Care must be taken to ensure that the same particles are identified in each frame

which requires that the frame rates be rapid enough that the particles do not exit the

region of interest in less than two frames. In addition the particles must be bright

enough to distinguish from the background.
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Many variations upon this theme exist, including Particle Image Velocimetry

(PIV) [76, 78]. Here, instead of relying on the rapid acquisition of multiple frames,

two exposures are taken in rapid succession, either through a fast camera or double-

exposing an image with two laser pulses. By measuring the distance the tracers

move over the double expsure, through autocorrelation or cross-correlation on the

images, flow vectors can be determined. Excitation is typically accomplished through

a planar sheet of laser radiation, limiting the flow measurements to a single focal

plane. Additional dimensions require multiple cameras or illumination at multiple

focal planes. Tracer particles must be very bright as to give sufficient signal in a

brief exposure time, typically using large fluorescent beads hundreds of nanometers

or larger in diameter.

While the above CCD-based systems can image a wide field of view in parallel, the

requirements of the analysis and the low sensitivity of the detector put lower limits

on the brightness, and therefore size, of the tracers that can be used. Conventional

forms of FCS or FCCS can be used to measure flows, where transit of the tracers

through the focal volume leads to the fluctuations that are later correlated [21, 22,

23, 24, 25, 26, 27]. These techniques allow for the use of smaller tracers, down to

single fluorescent dye molecules, and are much more tolerant of noise and low signal

strength than particle tracking methods. However, measuring the flow for an entire

device requires repositioning the focal volume for every pixel in the resulting flow

map.

An exstensive array of other methods exist utilizing fluorescence for measuring

flow vectors. However, these methods require specialized setups and constraints on

the types of systems that they will allow. A method that will work regardless of the

sample architecture would be ideal such that any motion that can be captured in an

image stack can be quantified.
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1.6 Super-resolution Microscopy

While fluorescence microscopy continues to be a widely popular technique for investi-

gating living cells, microscopic structures, and even whole multicellular organisms in

three dimensions, the technique is limited by its inability to resolve structures smaller

than the natural resolution limit. This limit, first described by Ernst Abbe in 1897, is

known as the diffraction limit (d) [8]. The value for the diffraction limit is controlled

by the wavelength of the light (λ) and the numerical aperture (NA = 2n sin a, where

n and a indicate refractive index and half-angle of the maximum cone of light entering

the lens, respectively) of the objective [8].

d =
λ

2n sin a
(4)

d =
λ

2NA
(5)

A wavelength of λ ≈ 550 nm (green light) and a numerical aperature of NA = 1.4,

this corresponds to a limit of ≈ 200 nm. Many interesting features exist below

this wavelength so in order to study them it is beneficial to employ methods that

generate images below the diffraction limit, or so-called super-resolution microscopy.

As indicated in equation 4, an increase in the angle of the collection optics will

result in a subsequent increase in resolution. This effect is very commonly utilized

in fluorescence microscopy with the use of high NA microscope objectives, where the

angle is on the order of 65 ◦.

Many methods have arisen in recent years to go beyond the diffraction limit in

a widefield configuration [83, 84, 85, 86, 87]. The first of these optical techniques

to be successful was near-field optical microscopy[88]. In this technique a very small

aperture is positioned very close to the emitter. This distance is short enough (in the

near-field zone) such that light does not diffract substantially, avoiding the need for
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lenses and therefore the restrictions of the diffraction limit. This technique has been

used to study membrane proteins but cannot be used for investigation beyond the

surface of a structure [89, 90]. As such, this technique is severely limited in its use

in intracellular investigations and all other techniques require the use of lenses in a

far-field regime.

Confocal fluorescence microscopy has proven to be an indispensable technique in

life sciences research for many years and offers a small increase in resolution [68].

By constraining the excitation and emission to a very small, point-like source the

resulting resolution is increased by a factor of approximately
√
2 [86]. The inclusion

of a pinhole also limits the influence of out-of-plane light and results in an increase

in axial resolution over conventional widefield microscopy. A small pinhole offers the

greatest increase in resolution but at the cost of light throughput. In addition, data

at a single point is collected at one time, requiring a scanning apparatus to generate

confocal images. Typical confocal systems can achieve lateral resolution of ≈ 150 nm

and axial resolution of ≈ 500 nm for visible (green) light.

For samples including a large amount of structure in the axial direction the com-

parative lack of axial resolution with conventional microscopy techniques is a disad-

vantage. In 4Pi microscopy or I5M microscopy, the resolution in the axial direction is

increased by a factor of 3 to 5, down to ≈ 100 nm, but the lateral resolution remains

unchanged [91, 92, 93]. These techniques both rely on the use of multiple objectives

to collect a larger portion of angles surrounding an emitter before interferometrically

recombining the signals into a single image. The resulting final image is one of higher

axial resolution in either a point-scanning (4Pi) or widefield (I5M) configuration.

Related to confocal microscopy, standing wave fluorescence microscopy (SWFM)

and structured illumination microscopy (SI) utilize spatially-varied excitation to yield

a final increase in spatial resolution [91]. To improve resolution in the axial direction

SWFM relies on a pair of counter-propagating, non-focused laser beams for excitation.
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These laser beams interfere, resulting in a standing wave in the excitation intensity

that varies rapidly over the experimental distance in the axial direction. Images

containing high-resolution information can be collected and combined to reconstruct

a single super-resolution widefield image [94, 95, 96]. This technique is limited to very

thin samples (≤ 250 nm), but for this class the resolution is improved by a factor of

≈ 2 [97].

In a lateral adaptation of SWFM, structured illumination utilizes information in

the spatial frequencies of fluorescence emission under structured excitation formed by

interfering laser beams or by an interference grating. Reconstruction of several images

yields a super-resolution with an increase in lateral and axial resolution of a factor of 2

[98]. This technique has been demostrated in 3-D to produce super-resolution recon-

structions of biological samples [99, 100, 101]. Finally, with the addition of nonlinear

saturated illumination, the theoretical framework for unlimited optical resolution has

been demonstrated; the true resolution is limited by the signal-to-noise ratio of the

acquisition, but PSF’s of ≈ 50 nm have been demonstrated [102].

With careful analysis the fluorescence from a single fluorophore can be fit to a

Gaussian function (in position vs. intensity) with the appropriate width. This fit-

ting to the point-spread function results in a localization of a fluorophore within

ten nanometers or less [103, 104, 105]. Such a method was utilized in the classic

case of single-molecule spectroscopy in biophysics - determining the nature of mo-

tion in myosin [105]. For well-isolated fluorophores this process is straightforward,

but fluorophores closer than the diffraction limit cannot be fit to a simple single

Gaussian and the need to further resolve the positions of the fluorophores before lo-

calization becomes necessary [106]. This separation can be energetic - that is, two

spectrally-distinct fluorophores can be imaged independently and later the positions

mapped back to the original image space to determine positions within the original
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diffraction-limited spot [107]. This separation can also be temporal, where indepen-

dent stochastic events amongst the different emitters results in separation of their

positions [106].

The simplest case of temporal separation is exploiting the single-step photobleach-

ing behavior of single molecules. By fitting the Gaussian-approximated point-spread

function (PSF) of a small collection of spatially unresolvable emitters before and after

a photobleaching event the position of the bleached molecule can be localized [106].

A similar technique can be used in conjuction with long-lived dark states, such as

those in semiconductor quantum dots, in place of photobleaching events [108]. In a

widefield configuration a large number of emitters can be imaged and localized. These

positions are later used to reconstruct a super-resolution image. However, there ex-

ists a trade-off between a well-labeled sample and the upper limit of the number of

emitters that can be localized in a small area.

In order to curcumvent this issue, several methods developed simultaneously use

a sample well-labelled with naturally dark fluorophores (photo-activated localization

microscopy, PALM; stochastic optical reconstruction microscopy, STORM) [109, 110].

A brief flash of short-wavelength light will switch a small subset of the fluorophore

population into the on state where they can be imaged until those fluorophores bleach.

These fluorophores can then localized with high precision by fitting with a PSF;

because only a small number of well-spaced fluorophores are on at a given time there

is minimal overlap to complicate the fit. This process is repeated until the entire high-

resolution image is constructed from the localalized fluorophore fits. This method

does require the use of fluorophores that can be switched on with a flash of short-

wavelength light and can take on the order of hours to reconstruct an image.

Most recently a method exploiting the natural blinking statistics of single fluo-

rescent emitters to generate super-resoltion images has been reported from Shimon
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Weiss and Jorg Enderlein [45]. This super-resolution optical fluctuation (SOFI) imag-

ing uses the information contained in intensity vs. time traces at single pixel locations

through an image stack in conjunction with higher-order statistics to reduce the width

of the point-spread function by as much as a factor of 5. The individual emitters are

separated by their stochastic blinking statistics rather than their distinct spectra or

a single on/off event. This method is closely related to the flow imaging methods

reported in this thesis and will be discussed in more detail in chapter 4.3, as well as

an extension of this method to utilize the microsecond blinking dynamics of common

fluorophores in a confocal geometry.

1.7 Noble Metal Fluorophores

The optical properties of noble metal clusters are unique due to the single unpaired

valence electron in the neutral atom. Neutral noble metal atoms feature a full-filled

d10 orbital with an additional s1 electron. These outermost electrons are very weakly

bound and are often considered delocalized and can move independently throughout

the crystal lattice [111]. Displacement of these free electrons by an external electro-

magnetic field results in polarization changes at the surface of a metal with a linear

restoring force [112]. Consequently the free electrons move throughout the crystal

lattice under a constant potential field of the positively-charged cluster core.

Due to the Pauli exclusion principle the energy levels in these clusters are quan-

tized and the energy of the electrons can be described by the classic particle-in-a-box.

This model, which can be expressed as

En =
n2 h2

8mL
(6)

where En is the energy of quantized level n, m and h are the electron mass and

Plank’s constant, respectively, and L is the size of the metal. The energy levels

increase with increasing number of electrons up to the maximum Ef , known as the
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Fermi energy, which is independent of particle size. Spacing between energy levels is

on the order of Ef\N for an N-atom cluster [113]. The Fermi energy also yields the

Fermi wavelength, or the de Broglie’s wavelength of an electron at the Fermi energy,

for the metal of interest. For both silver and gold the Fermi energy is 5.5 eV, yielding

a Fermi wavelength of around 0.5 nm [113].

Alkali metal clusters have similar electronic structures as the noble metals with a

single unpaired valence s electron. When observing the mass spectra of sodium metal

clusters, strong peaks at the mass corresponding to cluster sizes of N = 2, 8, 18,

20, 40, and 58 were noticed, indicating the relative stability of those ‘magic number’

clusters over other sizes [114]. Treating these electrons as free-moving and delocalized

particles that form spherical electron shells around a positively-charged core allows

these cluster sizes to be rationalized by the jellium model. Combined with the Pauli

exclusion principle, the shells are treated as quantized and can be described by the 3D

harmonic oscillator [114, 115]. The solutions to the spherical harmonic oscillator are

very similar to those for a single atom but with a quadratic dependence on the radius

of the potential. As a result the electronic shells and magic numbers represented in

metal clusters is somewhat different (1s, 1p, 1d, 2s, . . . corresponding to 2, 8, 18, 20

. . . electrons) than is observed for single atoms (1s, 2s, 2p, 3s, 3d . . . corresponding to

4, 10, 18 . . . electrons) [116]. The observed magic numbers of sodium atoms can be

explained by the fact that these cluster sizes yield full-filled electronic shells which

are stable.

For the spherical harmonic oscillator the energy level spacing, ω, can be given in

terms of the Wegner-Seitz radius, rs, and the number of free electrons, n [117] as seen

in equation 7

~ω = 3.61
~2

2µ r2s
n−1/3 (7)

where ~ and µ are Plank’s constant divided by 2π and the electron mass, respectively.
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With metal clusters having constant electron density, the Fermi energies of these

metals can be expressed as a function of the Wegner-Seitz radius alone as shown in

equation 8 [114, 115].

Ef =

(
9π

4

)2/3 ~2

2µ r2s
(8)

Combining equations 8 and 7 yields a simple relationship between energy level

spacing ω, and therefore frequency, and the radius of the cluster, R.

~ω u Ef (N)−1/3 = Ef rs R
−1 (9)

With this relationship it can be seen that an R−1 relationship between the en-

ergy level spacing of the particle and the particle size is expected. Studies on several

single-valence electron atom clusters have shown this dependence, including ionization

energies of Hg clusters [118], binding energies of Li clusters [119], and the photoion-

ization energies of K clusters [120]. Most telling were experiments determining the

optical spectra of NaN
+ clusters, where 3 ≤ N ≤ 64, at 105 K [121]. For the smallest

clusters, up to N = 9, electronic transitions that were well separated could be ob-

served. With increased cluster size these transitions began to overlap before giving

way to a collective plasmon.

The observations made in other single-valence electron metal clusters has been

observed in noble metals. Early work in this field involved isolating few-atom (2-8)

silver clusters in the gas phase or in low-temperature rare-gas matrices [122, 123, 124,

125, 126]. These experiments showed discrete absorption bands through the near-

UV and green. Emission in the UV through the red for silver dimer and trimer was

observed for clusters isolated in Kr matrices with additional work showing discrete

emission for tetrameric and octameric clusters in the same spectral region [127]. Sim-

ilar work with gold has demonstrated discrete electronic transitions for isolated few

atom clusters [125, 128, 129, 130]. Absorption transitions through the near-UV to
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green with emission in the near-UV to red were observed.

The much higher stability of gold clusters versus sliver clusters has allowed their

study in solution and at ambient temperatures to advance more quickly. Develop-

ments by Matthais Brust have allowed for the straightforward two-phase synthesis

of organic-soluble small gold nanoparticles protected by alkane thiols [131]. Ligand

exchange and etching can be used to change the solubility and sizes of these parti-

cles [132, 133, 134, 135, 136, 137, 138]. An enormous field of work exists concerning

these larger nanoparticles, but smaller particles showing discrete electronic transitions

have been made with other protecting ligands including Au55, Au38, Au28, Au11, and

Au3 [139, 140, 141, 142, 143]. With the use of PAMAM dendrimers (PAMAM =

poly(amidoamine)) smaller clusters - Au5, Au8, Au13, Au23, and Au31 - have also

been prepared [31].

The photophysical properties of these small gold clusters show a remarkable agree-

ment the predicted values from the jellium model. The emission energy of the smallest

particles (N = 1 to 13) agrees well with the expected dependence of Ef/N
1/3 [31].

The larger clusters (N = 23 to 38) deviate from this scaling but agree well with a

model incorporating a Woods-Saxon potential rather than a spherical harmonic po-

tential [144]. The Woods-Saxon potential is a consequence of the distortion due to

the larger particle sizes and is an intermediate between the parabolic potential well of

the spherical harmonic model and the square-well potential of larger particles. With

the addition of an anharmonicity correction the larger particles can be brought well

into agreement with the jellium model.

The photophysical properties agree well with the jellium model predictions but

the abundance and stability of cluster sizes fail to conform to expected distributions.

This disagreement is attributed to the influence of geometric stability and the close-

packing of gold atoms in the clusters. In a particularly impressive work, the crystal

structure of a thiol-protected Au25 cluster, [N(C8H17)4][Au25(SCH2CH2Ph)18] was
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reported. In this cluster a core gold atom is surrounded by 12 more gold atoms

forming an icosahedron [145]. This Au13 core is protected by a shell of six units of

the [-SR-Au-SR-Au-SR-] cyclic polymeric structure (-SR- = SCH2CH2Ph) with the

gold atoms stellated on the faces of the core icosahedron. The structural stability of

this cluster without the need of a magic number of atoms illustrates the importance

of geometric arrangement of the metal atoms for cluster stability.

Extending the same success to silver clusters has proven a more difficult challenge.

Silver clusters are much less stable in solution than their gold counterparts and require

a scaffold to template cluster growth and protect the sliver clusters from aggregation

[146, 147, 148, 30, 31, 149, 150]. The use of polyphosphate or polyacrylate allowed

for the requisite sequestering of silver ions and reduction upon γ-ray exposure [148,

147, 146, 151, 152]. In these clusters discrete absorption was observed from multiple

neutral and charged species that could be assigned to clusters of 2 to 4 atoms.

A great deal of work in the Dickson group at Georgia Tech as well as others

has taken the silver fluorescence that has been observed first on surfaces and in mass-

selected clusters into solution in order to more fully characterize and utilize the unique

photophysical properties of these species [30, 153]. Continuation of these efforts have

shown that PAMAM dendrimers are effective in protecting silver nanoclusters, leading

to species with emission across the visible and near infrared [154, 153]. Continued

work to improve the biocompatability of these probes led to the use of oligonucleotides

and peptides as cluster scaffolds [149, 155, 156, 157, 158, 159, 160, 161, 162].

The greatest success of with water-soluble silver cluster fluorophores has come

with the use of single-stranded DNA as a templating and support agent for the silver

cluster [31, 149, 155, 156, 158, 163, 160]. It has been found that the specific base

sequence of the DNA strand has a strong influence on the size, and therefore specific

photophysical properties, of the silver cluster. A range of fluorophores have been

created with extremely photostable emission across the visible and near infrared.
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These fluorophores feature very high quantum yields, large extinction coefficients,

and nanosecond lifetimes, yielding very bright emission on the single molecule level.

The fluorescence intermittancy due from these sliver clusters, assigned to a charge-

transfer process between the silver cluster and the DNA backbone [164], has proven

useful in the ability to control the timescale of this intermittancy secondary near-

IR irradiation [165]. This control of the dark-state dynamics allows for significant

fluorescence enhancement and modulation.

1.8 Fluorescence Modulation

Under increasing excitation intensities the fluorescence output of a fluorophore will

increase linearly before reaching a saturation limit. For most fluorophores this limit

is due to the depletion of the ground state fluorophore population and is typically not

a consequence of saturating the transition into the excited singlet state. Rather, this

depletion is due to intersystem crossing (ISC) to a triplet state [44, 166]. Intersystem

crossing happens with a constant probability for every excitation, so with increased

excitation intensities the fraction of molecules in the triplet state increases, leading

to the depletion of the ground state.

This triplet state will naturally decay back to the singlet ground state through

reverse intersystem crossing (RISC), but at a timescale of microseconds to milliseconds

versus a timescale of nanoseconds for the decay to the singlet ground state from the

singlet excited state. While in the triplet state the fluorophore is non-emissive and

therefore the triplet state population constrains the maximum amount of fluorescence

that can be realized from a fluorophore. In addition the triplet state is more reactive

than the ground state and therefore more succeptable to destructive photobleaching

reactions [52, 167]. Other possible phenomena give rise to fluorescence dark states in

addition to intersystem crossing, including isomerization and electron transfer [168,

40].
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While in a transient dark state it is still possible for a molecule to absorb an

additional photon [169, 170]. This so-called transient absorption is characteristic of

the distinct electronic environments of the excited and ground state [171, 172]. Just

as with an excited singlet leading to intersystem crossing, there is a finite probability

of an excited state triplet undergoing reverse intersystem crossing and returning to

the singlet (emissive) manifold [173, 174, 175]. In systems where the dark state is due

to other phenomena, a photon absorbed in the dark state can lead to isomerization

or other processes that return the molecule to the emissive state [164, 165, 176, 177,

178, 179].

Of particular utility is when the absorption leading to dark-to-emissive state sys-

tem crossing is of a different wavelength than the singlet excitation. In such a case

secondary illumination can be used to restore emission from a molecule in a long-

lived dark state trap. This scheme has been used for sequential single-molecule lo-

calization (PALM and STORM, mentioned above) and for optical lock-in detection

[180, 181, 182, 183]. However, in both of these cases the secondary illumination is of

higher energy than the fluorescence, giving rise to extra background in the fluores-

cence signal.

With longer-wavelength secondary illumination it is possible to depopulate the

triplet dark state of some organic molecules, as well as DNA:Ag silver nanoclusters,

leading to an enhancement in overall fluorescence brightness [165, 164, 184, 174, 44].

For most efficient fluorescence emitters this enhancement process is weak in solution

due to the low dark-state population to be depopulated with the secondary laser and

requires high laser powers (≈ MW/cm2) [44]. However, for organic molecules showing

significant triplet quantum yields, enhancements of up to 5-fold with appropriate

dual-laser excitation can be achieved in solution [184]. Particularly well-suited for

this process are DNA:Ag clusters, which can show several-fold enhancement with

secondary laser powers on the order of kW/cm2 [165].
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This fluorescence enhancement through dark state depletion operates on a rapid

(sub-microsecond) timescale and is proportional to the intensity of the secondary

laser. In concert these two features mean that the secondary illumination can be used

to encode the resulting fluorescence signal with an input waveform. The waveform will

be reflected only in the fluorescence of those molecules that are modulatable at the

wavelengths used and not in those that only emit under the same primary excitation.

By demodulating the fluorescence signal at the frequency used for modulation of the

secondary illumination those fluorophores of interest can be extracted from a signal

of high background [165, 184].

1.9 Organization of thesis

This thesis is organized in 6 chapters, including this introduction and final conclu-

sions. The intervening chapters will introduce the experimental methods used in this

work, cross-correlation flow imaging, the adaptation of this method for modulation

extraction and super-resolution imaging, and details of the synthesis and properties

of novel noble metal fluorophores.

Work appearing in this thesis has been published elsewhere in the following arti-

cles:

• P. R. Nicovich, P. Sood, J.-C. Hsiang and R. M. Dickson. “Confocal SOFI for

Super-Resolution Imaging with Fluorophores Showing Biocompatable Blinking

Dynamics.” 2010, in preparation.

• P. R. Nicovich, R. M. Dickson. “Out-of-plane Flow Mapping with Widefield

Cross-correlation Microscopy.” 2010, in preparation.

• P. R. Nicovich, R. M. Dickson. “Three-dimensional Flow Mapping in Microflu-

idic Channels with Widefield Cross-correlation Microscopy.” Israel Journal of

Chemistry, 2010, accepted.
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• J. Zheng, P. R. Nicovich, and R. M. Dickson. “Highly Fluorescent Noble-Metal

Quantum Dots.” Annual Reviews of Physical Chemistry. 2007, 58, 409-431.
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CHAPTER II

EXPERIMENTAL OVERVIEW

2.1 Bulk Photophysical Methods

Measurements of ensemble photophysics were utilized to quantify fluorescence and

absorbance spectra as well as fluorescence lifetimes. Bulk fluorescence measurements

were performed on a Photon Technology International (PTI) Quanta Master 40 fluo-

rimeter which was equipped with a photomultiplier tube (PMT) detector and xenon

arc lamp light source. Excitation and emission spectra were collected using FeliX32

software (PTI) which controlled the two monochromators. Absorbance spectra were

collected on a Shimadzu UV-2410 PC spectrophotometer. In all samples glass or

quartz cuvettes were used.

Fluorescence lifetimes were measured on a Edinburgh Instruments Lifespec-ps

system with a Hammamatsu microchannel plate photomultiplier tube (MCP-PMT)

and Picoquant diode lasers of appropriate wavelength as the excitation source. Fitting

and further analysis of the spectra was performed with the instrument software or in

custom-written MATLAB scripts.

2.2 Fluorescence Microscopy

Fluorescence microscopy experiments were performed on Olympus IX-70 or IX-71

inverted microscopes. Save for the spinning-disk confocal experiments the excitation

light, provided by a laser or mercury lamp, was directed through the rear port of the

microscope. The excitation was reflected up through the objective and to the sample

by a dichroic mirror of appropriate transmission spectra so to reflect the excitation

radiation but transmit the subsequent emission wavelengths. Emission was further
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spectrally filtered through an emission filter, typically a long-pass or band-pass filter

transmitting emission but not excitation wavelengths, before continuing on to a CCD,

APD, or PMT detector. In most cases the excitation light was also passed through

a band-pass filter before reaching the back aperture of the microscope to ensure that

no extraneous wavelengths continued through the experimental apparatus.

Microscope objectives used in this work were either oil immersion (100x, 1.40 NA;

60x, 1.45 NA) or, more commonly, water immersion (60x, 1.2 NA). When precise

control of the objective position was needed a piezo nosepiece (PI P-720) controlled

by a benchtop DC power supply was used. Throughout all experiments samples were

mounted on 22.5x22.5 mm glass coverslips (Fisher) of 0.15 mm thickness.

2.3 Time-Correlated Single Photon Counting

Time-correlated single photon counting (TCSPC) is a method by which the arrival

times of individual photons are recorded with very high temporal resolution (picosec-

ond or faster). In this method the photons are directed, upon exiting the microscope,

to a high-sensitivity photodetector (avalanche photdiode (APD) or photomultiplier

tube (PMT)), typically via an optical fiber. The photodetector transforms the inci-

dent photon into an electrical pulse, which triggers a photon counting module (Becker-

Hickl SP630 or Time Harp).

Photon arrival times are divided into two distinct values which are measured

separately. The macrotime of the photon arrival is measured from the beginning

of the experiment with lower temporal resolution [185]. The microtime is measured

with the use of a time-to-amplitude converter (TAC). The TAC is triggered by an

incident pulse (the ‘start’ pulse) from the photodetector corresponding to the arrival

of a single photon. Concurrently an external pulse train is supplied to the TCSPC

module from an arbitrary function generator. These external sync pulses are known

as ‘stop’ pulses. Upon arrival of a start pulse the TAC produces an analog pulse
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whose amplitude is precisely tied to the time between the arrival of the start pulse

and the next stop pulse. An anolog-to-digital converter transforms the amplitude of

the analog TAC pulse to a digital signal corresponding to the time the photon arrived

at between subsequent stop pulses. This more precise time signal is known as the

microtime.

The microtime and macrotime data yield different information at their distinct

experimental timescales. The macrotime resolution is on the order of hundreds of

nanoseconds to microseconds up to seconds or longer. The microtime time resolution

at the upper end is limited by the sync pulse train - often 100 ns. At the low end the

microtime is measured with resolution of tens of picoseconds.

2.4 Super-Resolution Confocal Microscopy

Confocal microscopy experiments were performed on a homebuilt confocal system

based around an Olympus IX-70 inverted microscope. A schematic appears in figure

2.3. To the pictured scheme a scanning stage was added to allow for confocal images

to be built from single-point data. Excitation was provided by the 632.8 nm line

from a HeNe laser that was passed through a 640/10X excitation filter, then a beam

expander to generate a spot to overfill the back aperture of a 100x oil-immersion

objective (Olympus, 1.40 NA) after reflecting off of a 670 nm long-pass dichroic mirror.

Fluorescence from the emitter passed through the same objective and dichroic mirror,

through a 710/40X band-pass emission filter and a 1.5x magnification lens, and then

exited the side port of the microscope. A 50 µm optical fiber was aligned at the side

port. The fiber was both acting as a pinhole and transmitting light to an APD.

The scanning stage was controlled by custom-written software (Microscoft Visual

C++) which also acted as the acquisition software for a TCSPC module (Becker-

Hickl). Data was collected serially at individual points to cover the area of interest.

At each point a dwell time of 250 ms or 500 ms was used. For experiments presented,
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an area of 1 µm x 1 µm was covered with 25 nm steps.

The emitter chosen was a DNA:Ag complex with excitation and emission maxima

at 630 nm and 700 nm, respectively. This complex was synthesized by combining

single-stranded DNA (5’- CCC TAA CTC CCC - 3’) with silver nitrate (AgNO3) and

sodium borohydride (NaBH4) in a 1:6:3 ratio in aqueous solution. These solutions

were spin cast 5% PVA (poly(vinyl alcohol)) with 2-, 10-, or 100-fold dilutions onto

standard glass coverslips and imaged.

2.5 Spinning Disk Confocal Microscopy

A modification of typical confocal microscopy involves the use of a spinning disk with

a large number of pinholes which trace out an image of the entire focal plane but

reject the out-of-plane light. When static the pinhole array generates many spatially-

constrained detection volumes in parallel [66]. By rotating the pinhole array at a

rate much faster than the image acquisition the multiple pinholes trace out a path

covering the entire field of view evenly, resulting in a widefield confocal image.

In the experiments appearing in this work this was achieved with a Yokogawa

Confocal Scanning Unit 10 (CSU 10). This particular unit improves light throughput

through a second disk with microlenses aligned with the pinhole array, focusing a

larger amount of the excitation through the pinhole array [73].

Excitation light was aligned into a single-mode optical fiber which passed through

the CSU, through the microscope side port, and onto the sample. Emission passed

through the same side port, through the same pinholes, and then was diverted by

a dichroic mirror through an emission filter before detection on a CCD. A diagram

of the Yokogawa CSU 10 appears in figure 2.2 and a schematic for the experimental

setup in figure 2.1.

The pinhole array traces out 12 images per rotation and rotates at 30 Hz. The

frame rate of the camera must be synchronized to the 360 images per second to ensure
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Figure 2.1: Schematic of the experimental setup for spinning disk confocal mi-
croscopy. Emission and excitation are shown as single side-by-side beams for clarity
but would be colinear and multiple in experiment. Excitation light is indicated in
blue and emission in green. Yokogawa Confocal Scanning Unit - CSU10; Olympus
inverted microscope - IX-70; Andor iXon EMCCD camera - CCD
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Figure 2.2: Schematic of Yokogawa Confocal Scanner CSU 10. Excitation light is
indicated in blue and emission in green.
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that even illumination across the field of view reaches the detector. The frame rates

chosen were those that satasfied this condition and allowed for sufficient exposure

time with minimal blurring.

2.6 Fluorescence Correlation Spectroscopy

Fluorescence Correlation Spectroscopy (FCS) is a powerful technique to measure

many photophysical processes giving rise to fluctuations in the intensity vs. time

signal. The fundamental technique in this field utilizes a single diffraction-limited

focal spot and is useful in measuring diffusion constants, hydrodynamic radii, con-

centration, and blinking dynamics. In the experimental setup (Figure 2.3) a laser is

focused through a microscope objective into a diffraction-limited spot, typically 1-15

femtoliters in volume, in the sample solution. Emission from fluorophores inside the

focal volume passes through the same objective, then through the microscope op-

tics and spectral filters, before exiting the microscope. Fluorescence signal continues

through an optical fiber (50 µm or 100 µm core) acting as a pinhole before reaching an

APD. Signals from the APD are recorded with a TCSPC module and later analyzed.

While any signal that yields fluorescence fluctuations can be analyzed through

fluorescence correlation spectroscopy, the properties of interest in this work are the

diffusion and blinking timescales. A more detailed derivation of the relevent equa-

tions appears in Appendix A. For independently-diffusing emitters in a Gaussian-

approximated focal volume, the autocorrelation is

G(τ) =
1

N

[
1 +

τ

τD

]−1 [
1 +

τ

ω2
o τD

]− 1
2

(10)

where N , τD, and ωo correspond to the number of molecules in the focal volume,

the diffusion time (seconds), and the aspect ratio of the focal volume, respectively.

The aspect ratio is defined as ωo = ωz

ωxy
, where ωz and ωxy are the e2 radii (m)

of the Gaussian focal volume in the axial and lateral directions, respectively. The
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Figure 2.3: Schematic of a typical FCS experiment. Excitation is shown in blue and
emission and fluorophores in green. Emission and excitation are shown as single side-
by-side beams for clarity but would be colinear and multiple in experiment. Confocal
experiments were performed on an identical setup with the addition of a scanning
stage. Avalanche photodiode - APD; External sync source - Sync; Time-correlated
single-photon counting module - TCSPC
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three variables can be fit to an experimental autocorrelation (generated in BIFL or

MATLAB). The value for N can be transformed into concentration, C, by

C =
N

Veff

(11)

where Veff , the effective volume (m3), is defined as

Veff = π
3
2 ω2

xy ωz (12)

The value for τD can be used to determine the diffusion constant, D (m2 sec-1), by

D =
ω2
xy

4 τD
(13)

and then onward to the hydration radius, Rh, (m), through the Stokes-Einstein equa-

tion

Rh =
kB T

6 π η D
(14)

where kB is the Boltzmann constant (1.3806503 ∗ 10−23m2 kg s−2 K−1), T the tem-

perature in Kelvin, and η the viscosity of the solvent (8.94 ∗ 10−4N m−2 s for water

at 298 K).

It is necessary to define the size of the focal volume in terms of some external

property, either concentration or a known diffusion constant. The concentration for

a sample of pure dye is straightforward to determine if the absorption cross-section is

known. Running a range of known dilutions and using the experimentally-determined

value for N at those concentrations generates a linear plot, which, when extrapolated

to zero dilution, returns the number of dye molecules per focal volume for the original

dye solution. From this information and equations 11 and 12 the dimensions of the

focal volume can be determined. Alternatively if the diffusion constant is known

the focal volume size can be calculated using the experimental diffusion time τD and
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equation 13. In practice using the diffusion constant to determine focal volume is more

consistient than through concentrations. For a typical xanthene derivative organic

dye (Rhodamine, Alexa 488...) the diffusion constant is around 2 x 10-10 m2 sec-1 [1].

After calibration of the focal volume with a dye standard the same setup can be

used to determine values of concentration, diffusion constant, and hydration radius of

an unknown fluorophore. Therein lies the power of FCS for these measurements - the

sample does not need to be chemically pure, only soluble and emissive, to determine

values such as size and extinction coefficient.

The strongest fluctuations are observed when only a few molecules, on average,

are in the focal volume (see 1
N

dependence in equation 10), requiring extremely dilute

solutions (nM to pM) of fluorophore. Experiments were performed with the focal

volume far enough away from the coverslip (approximately 30 µm) to avoid artifacts

in the molecular diffusion. Because of the need for a long working distance between

the focal volume and the objective a water immersion objective (Olympus, 60x, 1.2

NA) was used for all diffusion FCS experiments.

Static molecules that undergo fluorescence intermittancy (blinking) will also give

rise to an autocorrelation signal. For most fluorophores (i.e. not quantum dots) these

processes are exponential in nature and can therefore be fit to a single exponential

function

G(τ) = F exp

(
τ

τF

)
+ 1 (15)

where F and τF are the fraction of blinking emitters and the fluctuation timescale,

respectively.

2.7 Microfluidics

Microfluidic channels were molded in poly(dimethysiloxane) (PDMS) and sealed on

a glass coverslip. Flow was achieved through custom plumbing in a gravity-fed or
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pressure-driven flow. Continuous pressure was supplied by a syringe pump delivering

solution from a 50 µL glass syringe. Straight channels were 50 µm by 50 µm in

cross-section in a simple Y-channel setup with one inlet and two outlets. Three-

dimensional flow was achieved by introducing obstructions into a straight channel or

with a microfluidic channel designed to generate flow vortices.

All microfluidic channels were obtained from a generous gift from Grant Hendrick-

son and Andrew Lyon.

2.8 Dual-laser experiments

Fluorescence modulation was achieved by introducing a secondary, longer wavelength

laser into the same focal volume as the primary excitation. For single-point FCS

experiments the two laser beams were combined with a dichroic mirror outside the

microscope before the beams entered the rear port (see figure 2.4). For dual-laser

excitation in conjunction with the spinning disk system, the primary excitation was

intruduced through the side port of the microscope while the secondary excitation

was routed through the back (see figure 2.5). In both cases careful choice of the

dichroic mirror in the microscope turret was vital.

The modulation signal was introduced to the secondary laser through a mechani-

cal chopper or shutter for low-frequency signals (up to 60 Hz). High frequency signals

were introduced by routing the secondary illumination through an acousto-optic mod-

ulator controlled by an arbitray function generator. With such a setup several kHz

signals are possible. Secondary lasers in all experiments were a Ti:Sapphire (Coher-

ent) operating in CW mode or a diode laser, both operating at 805 nm.

2.9 Data Analysis

Data analysis was performed primarily with custom-written scripts in MATLAB.

When warranted some data was analyzed with BIFL (Becker-Hickl) or Origin. The

use of MATLAB scripts allowed the large number of available built-in functions to
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be exploited, greatly streamlining the development of the analysis procedures. Image

data was exported as ASCII data in the Andor Solis acquisition software for further

analysis. Spectra were recorded as ASCII files for later analysis. Data from TCSCP

experiments were utilized in the native file format for the Becker-Hickl board.

The large amount of image data that needed to be processed required careful

management of memory through the analysis. This was accomplished originally by

declaring each frame of image data as a cell in a cell array which allows for the image

stack to be stored in non-contiguous memory. However addressing portions of this

data is slow so subsequent analysis was accomplished by first converting the exported

Andor ASCII files to a binary file. The necessary portions of this binary file could be

read much more rapidly, increasing the speed of the analysis by several fold over the

previous method.
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Figure 2.4: Schematic of a dual-laser FCS experiment. Excitation is shown in blue,
emission in green, and secondary illumination in red. Beams are shown side-by-side for
clarity but would be colinear in experiment. Avalanche photodiode - APD; External
sync source - Sync; Time-correlated single-photon counting module - TCSPC
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Figure 2.5: Schematic of a dual-laser spinning disk confocal experiment. Excitation
is shown in blue, emission in green, and secondary illumination in red. Beams are
shown as single side-by-side beams for clarity but would be colinear and multiple, for
excitation and emission, in experiment. Yokogawa Confocal Scanning Unit - CSU10;
Olympus inverted microscope - IX-70; Andor iXon EMCCD camera - CCD
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CHAPTER III

WIDEFIELD CROSS-CORRELATION SPECTROSCOPY

FOR FLOW IMAGING IN MICROFLUIDIC CHANNELS

3.1 Introduction

Microfluidic devices have become the basis for automated sensors and miniaturized

chemical reactors in a wide range of applications [186, 187, 188]. To accommodate

high throughput, even with low sample volume, these devices are becoming increas-

ingly intricate, with additional functionalities packed into ever smaller designs. Often

solution handling, processing, and sensitive detection are all to be performed on the

same microscale device. The advent of ‘nanofluidics’, in which surface effects and

fabrication processes play a large role in device performance, and the common need

to direct analyte to the surface for sensing, make imaging the resulting flow inside

devices more difficult [189]. Most flow imaging techniques rely on tracking many

particles moving with the flow stream to determine their motion through consecutive

images. Such methods require following large numbers of individual particles, but

may still ineffectively map flow through all areas of the channel [76].

Brightly fluorescent tracer particles are often utilized to enable high signal, but the

high concentrations necessary to rapidly map out flow leads to high background from

out-of-focus tracer particles. Such single particle imaging requires a high number of

photons per frame, coupled with efficient background rejection and tedious analysis to

map out only a subset of flow vectors within the channel. Following rapidly flowing

particles requires high frame rates and therefore bright particles (e.g. fluorescent

beads of several hundred nanometer diameter). As microfluidic devices shrink, tracer

particles must also become smaller, thereby limiting brightness. Below a certain
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brightness threshold it becomes impossible to localize the individual particles in the

image, precluding particle tracking algorithms from determining the flow speeds in

the system [190].

Fluorescence Correlation Spectroscopy (FCS) and fluorescence cross-correlation

spectroscopy (FCCS) have both been successfully applied to measure flow within

microfluidic channels [191, 23, 27, 192, 193]. Such methods offer efficient background

rejection due to imaging of fluorescence fluctuations due to dye or tracer traversal

through individual (FCS) or pairs (FCCS) of diffraction-limited volumes [55, 56, 57,

58]. While background is efficiently rejected due to collection through a pinhole, the

spatial resolution is severly limited, making the task of mapping the flow vectors in

the entire channel arduous [25].

FCCS uses two focal volumes and the cross-correlation of the two signals from

the individual focal volumes to improve flow measurements over that possible with

FCS [59, 21, 22]. The cross-correlation that is generated has a maximum value whose

position is dependent on the flow speed, distance, and angle between the flow vector

and the vector connecting the two focal volumes (see section 3.2 Theory below).

Cross-correlation analysis has some important advantages over autocorrelation tech-

niques - the cross-correlation is more tolerant of non-ideal focal volume shape and

saturation effects while simutaneously being more robust at measuring directional

flow [194, 195]. Most importantly, FCS measures fluctuations in a single symmetrical

focal spot, precluding the determination of direction in flow while the pair of spots

in FCCS allows both speed and direction to be measured.

Combining the particle averaging advantages of FCCS and the large-area imag-

ing of particle tracking would be beneficial in mapping flow. To reduce out-of-focus

fluorescence a Spinning Disk Confocal Scanning Unit (CSU) enables visualization of

fluorescence from a single image plane. Here, we develop optically-sectioned fluores-

cence cross-correlation imaging for rapidly measuring steady-state flow throughout
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the entire channel.

The Yokogawa CSU unit consists of a pair of spinning disks, one with a series of

pinholes, the other with aligned micro lenses, that trace out illumination over a wide

area as the disks spin. The resulting emission is collected through the same set of

pinholes, which rejects light from other focal planes and constrains the field of view in

the axial (z) direction. The resulting confocal images are captured at high frame rates

on an electron-multiplied CCD (EMCCD) camera. The EMCCD allows for detection

of fluorophores with high sensitivity in a widefield configuration. With each pixel in

the CCD acting as a focal volume, cross-correlations can be calculated by correlating

the fluorescence vs. time trace between any two arbitrary pairs of pixels throughout

the focal plane [65, 64]. Changing the focal plane in the z direction yields a map of

the cross-correlation parameters through the entire volume of interest. Such a setup

has previously been used with FCS to measure diffusion in aqueous solutions and

collagen matrices [67].

The technique presented here provides a method to measure the amplitude and

directional flow of particles through a large volume of interest. FCS and FCCS have

been employed to measure flow speeds [21, 22, 23] or directions [24] in microfluidic

devices. By repositioning the microscope objective, some have extended this to imag-

ing beyond individual spots or pairs of spots to three dimensions as well [25, 26, 27].

However, to image an entire volume, these methods rely on taking individual inten-

sity vs. time traces at each position. Here, data for all points in a single focal plane

are recorded at once. From this, the individual time traces are reconstructed later,

greatly reducing the total acquisition time versus serial repositioning of a single sam-

ple volume. At a single focal plane, the same data set can be used to also reconstruct

the total flow vector, eliminating the need for repositioning the detection volume

during data aquisition.

Extending flow measurements to allow motion in the axial direction, perpendicular
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to the focal plane, to be quantified, has been attempted through several different ex-

perimental arrangements with some success. Three-dimensional extensions of particle

velocimetry imaging (PIV) have existed for some time but necessitate multiple lasers

or CCD cameras, greatly increasing the cost of such a setup. Similar adaptations to

particle tracking (PTV) experiments have been performed, often at the expense of

real-time feedback systems or previous knowledge regarding the motion in the system

of interest. Mathematical assumptions can greatly simplify the measurement of these

axial flows from planar flow measurements, but do not actually result from an ex-

perimental measurement of the axial flow. Single-point flow measurements utilizing

variations of fluorescence correlation spectroscopy (FCS) have also been used, with

some success, to measure out-of-plane flows in microfluidics and blood vessels of live

organisms [26].

Particle-tracking algorithms require that the tracers be visible in subsequent focal

planes, necessitating a high signal strength, which is compounded by the fact that a

signal from a particle decreases as it leaves the focal plane. Single-point correlation

techniques are limited by the small area probed in a single experiment, which is an

even greater issue when the flow in an entire 3-D volume is of interest.

The nature of the steady-state analysis can determine flow velocities with probe

brightnesses much lower than can be handled by particle-tracking algorithms. Because

of the generality of this method, the technique could also be applied to motion or

transport along cellular structures. In addition, because the original data is recorded

as images, other desirable variables can be extracted from the same data set.

3.2 Theory

Fluorescence correlation spectroscopy uses the fluctuations of the fluorescence signal

at time t about the mean fluorescence intensity, given by
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δF (t) = F (t)− {F} (16)

where the brackets indicate an average over time. The normalized cross-correlation

function, Gcc(τ), resulting between the fluorescence signals F1 and F2 of two focal

volumes, P1 at position r⃗ and P2 at position r⃗′, is given by

Gcc(τ) =
{F1(t, r⃗)F2(t+ τ, r⃗′)}

{F1} {F2}
(17)

in which the brackets indicate an average over all time t. From the equation 17

and those appearing in [21], the cross-correlation function for a system experiencing

directional flow is given as

Gcc(τ) =

[
N(1 +

τ

τD
)

√
1 +

ω2
oτ

z2oτD

]−1

exp

[
−R2

ω2
o

1

(1 + τ
τD
)

(
τ 2

τ 2Flow

+ 1− 2
τ

τFlow

cos α

)]
(18)

where τD and τFlow are the time scales for diffusion and flow, respectively, and N the

average number of molecules crossing between the two focal volumes. The derivations

of this and subsequent equations are covered in more detail in appendix A. The two

detection volumes are assumed to be equal volume 3-D Gaussians with 1/e2 radii ωo

and zo in the xy and z directions, respectively, and separated in the xy plane by the

”spacing” vector R⃗, with length R and in-plane angle α relative to the vector of flow.

In this work the spacing vector is that connecting the center of each pixel pair chosen

by the algorithm for generating each cross-correlation, the set of which yield the flow

direction at each point.

The applicability of the cross-correlation analysis requires flow to be constant in

speed and direction within the analysis volume and measurement acquisition time.

In addition, the flow can be assumed to be much faster than diffusion, such that

τFlow ≪ τD, which simplifies equation 18 to
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Gcc(τ) =
1

N
exp

[
−R2

ωo
2

(
τ 2

τFlow
2
+ 1− 2

τ

τFlow

)
cos α

]
(19)

which has a maximum value at τ = τFlow cos α. For flow of unknown angle, the flow

vector can be determined by exploiting the cosine dependence between the flow vector

and the spacing vector, R⃗. The vector-variant flow analysis is described in more detail

in section 3.3.5.

For flow in a single direction over the entire volume of interest, the form of the

cross-correlation can be further simplified to reduce computational time. By choosing

a spacing vector that is parallel to the flow vector, the cos α term is reduced to 1,

reducing equation 19 to

Gcc(τ) =
1

N
exp

[
−R2

ωo
2

(
τ 2

τFlow
2
+ 1− 2

τ

τFlow

)]
(20)

Here the maximum of the cross-correlation function is simply at τFlow, and since

R is known, the flow speed at that point is given by

V =
R

τFlow

(21)

The details of the the flow analysis algorithm are covered in more detail in sections

3.3.4, 3.3.5, and 3.3.6. For constant-angle flow, pixel pairs separated by a constant

spacing of distance R and parallel to the flow vector are iteratively repositioned

throughout the image space and the resulting cross-correlation are fit to equation 20.

The τFlow value at the location of the pixel pair is used with equation 21 to map

the flow speed in the image space. Varying or unknown flow requires that the flow

angle first be determined. For this, a central pixel is chosen and cross-correlations

between this and a set of surrounding pixels are taken. From either the amplitudes or

measured τ values of these cross-correlations as a function of position the flow angle,

and subsequently the velocity can be determined.
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The derivation of equation 18 invokes Gaussians to describe the shape of the focal

volumes. Pixels of a CCD have definite non-Gaussian character, and previous works

have defined the relevent physical parameters in terms of the pixel dimensions [196] or

introduced corrections to ω0 to account for this [67]. While these corrections were nec-

essary for autocorrelations, the comparative robustness of the cross-correlation to the

non-Gaussian character of the detection volumes makes these corrections unnecessary

in this work [194].

3.3 Experimental

3.3.1 Experimental Setup

The experimental setup was based on a spinning disk confocal scanner (Yokoagwa

CSU 10) mounted on an inverted microscope (Olympus IX 70). Imaging was achieved

with a 1.2 NA 60x water immersion objective. Microfluidic channels (50 µm by 50

µm cross-section) were molded in poly(dimethysiloxane) (PDMS) and sealed on a

glass coverslip. For the 3-D flow mapping experiments a y-shaped channel was used

with a single input, a long (> 5 mm) straight section, then a fork to two outputs. In

the case of measuring axial flow a channel designed to yield a vortex along the flow

direction was used.

Flow was achieved by loading a solution of fluorescent beads or dye into the inlet

tube on one side of the channel and gravity-fed through the device or by syringe

pump. The 496 nm line from an Ar+ laser (Coherent Innova 90) was aligned into a

3.5 µm optical fiber, coupled into the scanner, and routed through the side port of the

microscope. The excitation was directed through the microscope objective, exciting

the tracer particles (fluorescein-impregnated polystyrene fluorescent beads of 100 nm

or 20 nm nominal diameter or Alexa 488-labeled anti-mouse IgG).The emission was

collected through the same objective, side port, and scanner, through the dichroic and

emission filters inside the scanner, before detection with a back-illuminated EMCCD
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camera (Andor iXon DV887).

To increase the frame rate of the camera, only a limited area of the CCD was used

and pixels were binned together (4x4 bins). With these accommodations, an area of

100x512 pixels with 4x4 pixel bins could achieve over 1000 frames per second and full-

frame images of 512x512 with 4x4 binning (creating 128x128 superpixels) up to 150

frames per second. The finite number of pinholes of the spinning disk requires that

the frame rate of the camera be synchronized to the rotation of the disk, so the frame

rates used were the fastest possible that achieved the necessary synchronization.

All chemicals were used as received. Alexa Fluor 488 and Alexa Fluor 488-

conjugated anti-mouse IgG and 100 nm FluoroSpheres fluorescent microspheres were

obtained from Invitrogen (Carlsbad, California, USA) and Polyethylene Glycol 8,000

(PEG 8K) was obtained from Teknova (Hollister, California, USA).

3.3.2 Data Analysis

A series of images, typically 1000-50,000 frames, in a single focal plane were collected.

A collection of these image stacks taken at a sequence of z -positions constituted a

data set. Data sets were exported as ASCII files and analyzed in MATLAB on a PC.

3.3.3 Flow Simulations

Imaging of flow was simulated in MATLAB with initial particle locations being evenly

distributed randomly in 3-D across a 100x100 pixel CCD image. The z position of

the particle was used to simulate the effect of focal depth in the system. A pre-

chosen parabolic flow function was used to translate the center positions of each of

the points for the subsequent frame based on the current position. The flow function

was a parablolic displacement along the x-axis of 1.0 pixels/frame at the peak and 0

at the walls with additional 3-D diffusion appropriate for 100 nm beads. Simulations

and experience indicate that 0.5 pixels/frame is an optimum flow rate for the cross-

correlation algorithm described here (data not shown). From the (x, y, z) position
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Figure 3.1: Generation of simulated bead images - first a center point for a bead is
generated, which is then used as the center point for a 2-D projection of a Gaussian.
The Gaussian is scaled, a constant background added, pixelated to simulate CCD
images, and Poissonian noise added based on pixel intensity. A peak with S/N = 3.4
is shown here.

of the particle centers, an image frame was generated by modeling the intensities as

symmetric 2-D Gaussian distributions.

I = I0 exp

(
−[(x− x0) + (y − y0)]

2

2σ2
xy

)
exp

(
−z2

2σ2
z

)
(22)

Here, σxy and σz represent the e−2 radii of the experimentally-determined PSF

for the system. To simulate the pixelation from the CCD, the function was only

evaluated in integer steps in the xy direction. The zero for the z-axis was taken as

the focal plane and the distance above or below resulted in a change in intensity

projected on the image.

Typically 10,000 frames were simulated, and the requisite number used to deter-

mine the image noise tolerance of the cross-correlation algorithm. To simulate Pois-

son noise inherent in CCD-based fluorescence imaging, the images generated as above

were first scaled to a maximum intensity per particle from 100.25 to 103 (1.77 to 1000)

counts per frame. To this was added a constant background of 10 counts per frame.

The value for the final intensity at each pixel was taken as a Poisson-distrubuted

random number (generated with MATLAB’s poissrnd function) with a mean equal
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to the raw intensity (the sum of the scaled signal and constant background).

The S/N ratio for these images were determined by

I√
σ2
bkgd + σ2

obj

(23)

with σ2
obj and σ2

bkgd as the variances of the signal and background, respectively. Here

the noise is Poissonian, so these variances are also equal to the mean raw intensity

values used to generate the simulated images. Substitution for the variance with the

respective raw intensity yields the easily calculable equation 24.

λ√
10 + λ

(24)

Images were generated in this fashion with identical time-dependent particle lo-

cations, but with peak S/N values ranging from 0.8716 to 31.47.

The RMS deviation between the model and expected flow maps were defined as

follows:

Error =
√
{Expected− Fit}2 (25)

The expected values were taken from the initial displacements used (here, 1

pixel/frame in the center of the channel, 0 at the walls) to build the simulated image

stacks, and the fits measured to determine the analysis algorithm’s ability to return

the expected values in the presence of varying amounts of Poisson noise. Because

the flow speed was made to vary with the position along the x-axis, the fit values in

a single column from the flow speed map were averaged in the determination of the

error. Increasing number of frames for simulations generated with varying S/N ratios

were taken when generating the cross-correlation.

Simulations for estimating the experimental limits of the different flow mapping
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algorithms were performed in a similar manner as above with some alterations gener-

ating the specific properties of interest. In all cases constant flow through the entire

region of interest was simulated along with appropriate diffusion of the simulated

particles (100 nm beads if not otherwise stated). Acquisition rates for all simulations

were held at 100 Hz with pixels corresponding to 1 µm in the image plane.

For the in-plane angle fitting algorithm flow was simulated at a S/N of 31.47 and

speed of 0.5 pixels per frame. For each stack of 10,000 frames the flow direction was

varied from 0 to 2π radians relative to the x-axis. A similar method was employed for

axial flow angles, but with the axial flow angle varying from 0 to π radians relative

to the focal plane and the in-plane angle held constant at π\2 radians relative to the

x-axis. To replicate experimental data two focal planes of a spacing of 4 µm in the

axial direction were simulated (20,000 frames each) and then interlaced, resulting in

a single image stack with alternating images corresponding to the two focal planes.

In order to determine the influence of diffusion on the resulting flow map data at a

range of flow speeds was simulated for each of four diffusion constants (appropriate

for 10 nm, 50 nm, 100 nm, and 1000 nm beads in water). The results generated from

the analysis of these diffusions is discussed in the subsequent sections.

3.3.4 3-D Flow Mapping

To create a map of flow velocities in 3-D, a series of flow maps in 2-D are first

determined and later reassembled to form the flow map for the entire volume. For

a 2-D flow map, the analysis algorithm chooses a pair of pixels in the image stack

separated by constant spacing vector, R⃗, which has length R and is parallel to the

flow vector.

This vector is initially set in a distance in pixels in the image stack to be analyzed,

but this is easily converted to units of distance (e.g. µm) upon calibrating the effective

object-space pixel dimensions. The data for each of the pixels in the pair through
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Figure 3.2: Cross-correlation between a single pair of pixels: 2(a) Fluorescence
image with pixels chosen for cross-correlation(diamonds); 2(b) Intensity vs. time
traces for pixels chosen; 2(c) Resulting cross-correlation (circles) and fit (red line)
from two pixels; 2(d) Cross-correlations between pixels of constant spacing moving
from wall to center of channel (right to left). The peak position shifts to shorter
delays with increasing flow speed.
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the entire image stack are transformed from intensity vs. position plots to a pair of

intensity vs. time traces. The cross-correlation of the intensity vs. time traces is

fitted to equation 20, yielding τFlow, and then velocity (V ) from equation 21. The

resulting velocity is mapped back onto the position of the upstream pixel of the pair.

Iterating the position of the pixel pair with constant spacing vector throughout the

entire xy image results in a 2-D flow map, a series of which can be stacked at known

positions along the z axis to form a 3-D flow volume map.

3.3.5 Flow Angle Fitting

While straight sections of a microfluidic channel operating under laminar flow condi-

tions rarely see any significant deviation from a single flow direction, there are many

areas surrounding bends, obstructions, or other inconsistencies in a channel that alter

both the magnitude and direction of flow. To determine both components of the flow

vector in such a case, the dependence of the cross-correlation function on cos α, as

seen in equation 19 is exploited. For a single cross-correlation, the apparent τ from

the fit will follow the form

τ = τFlow cos α (26)

in which α is the angle between the spacing vector and the flow vector. As diagrammed

in Figures 3.3 and 3.4, choosing a series of pixels about a central pixel and taking the

cross-correlations between the central and surrounding pixels, a plot of the measured

τ/R values vs. β, the angle between the spacing vector and an arbitrary zero angle

vector, will result in a cosine curve with an amplitude τFlow and phase Ψ. To produce

a full 2π range of angles, both the forward and reverse cross-correlations are performed

for each pair of pixels. The cross-correlation that fits best and yields the greatest τ

value of the two is chosen as the data point for that β, with those taken from reverse

cross-correlations taken as the negative.
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Figure 3.3: Diagram of angles used in angle-fitting analysis. Here, α designates the
angle between the flow vector and the spacing vector, R⃗, β the angle between R⃗ and
the x-axis, and Ψ that between the flow vector and x-axis.
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Figure 3.4: 4(a) From single simulated image (of 50,000), center point (green circle)
is chosen. Cross-correlations between this point and many surrounding points (red
squares) are taken. 4(b) Measured τ as a function of angle β from cross-correlations
determined between points in 4(a) (circles) and fit (red line). Those values not fitting
within constraints are set at τ = 0 and not included in the fit.
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In practice, it is challenging to take advantage of the cosine dependence because of

the highly directional flow. A more effective method involves mapping the maximum

amplitude of the cross-correlation between a central and surrounding pixels onto the

position of the surrounding pixel. The cross-correlation amplitude function can be

found by substituting the value for the peak position (equation 26) for τ in equation

19, yielding equation 27.

G(τmax) = S
1

N
exp

[(
R2

ω2
o

)
sin2α

]
(27)

To remove the ambiguity in the angle resulting from the identity sin2(α) =

sin2(−α) an additional parametric term, S, is introduced (eqn. 28).

S =

 1 : −π
2
≤ α ≤ π

2

−1 : −π
2
> α > π

2

(28)

As before, forward cross-correlations between the center pixel and surrounding

pixel are taken as positive values and the reverse cross-correlation as the negative.

Once the value for the angle is known, the velocity can be determined using equa-

tion 26 with pixel pairs most closely colinear with the determined flow angle. While

equation 26 relies on values returned from the fitting of cross-correlations, equation

27 determines angles when using the maximum of the measured cross-correlation, re-

moving the need for an accurate fitting to a potentially noisy data set. This shortcut

does not allow for the highest precision when mapping maximum correlation ampli-

tudes, but this lack of precision is of little consequence when averaged out in the

subsequent fitting of the cross-correlation map.

Pixel pairs that are far from the flow vector will return poor cross-correlations

of low intensity. Fitting the peak position rather than the amplitude weights these

pixels equally with those closer to the flow vector and so a fit to a noisy correlation
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(a)

(b)

Figure 3.5: 5(a) Measured cross-correlation amplitude map for a single central
pixel and set of surrounding pixels. 5(b) Calculated map fit to 5(a) using equation
27. Result is fit with angle of -2.386 radians.

53



would obscure the expected cosine dependence. To avoid such an issue, strict con-

straints must be placed on the acceptable τ values returned by the algorithm. In

addition, very large (upwards of 50,000 frames) data sets are required in order to

improve the quality of the cross-correlations and therefore accuracy of the returned

τ value. With the amplitude-mapping algorithm those poor cross-correlations have

low amplitudes and pixel pairs closer to the flow vector will yield cross-correlations of

higher amplitude, effectively weighting the angle fit in favor of directions of higher-

quality cross-correlations and closer to the true flow angle. This results in an order of

magnitude decrease in the length of the necessary data set and an increase in accuracy

in the flow vector measurements over the method relying on measured delays.

3.3.6 Axial Flow Mapping

Extending the analysis to allow for 3-D vector information requires the adaptation of

previous equations to include both axial and planar components. The nature of cross-

correlation analysis requires that data taken at different focal planes be on the same

time axis in order to generate a correlation. This is accomplished experimentally by

rapidly repositioning the focal plane of the objective with a piezo nosepiece driven by

a periodic square-wave type function. Imaging rates of the CCD correspond to twice

that of the repositioning function, resulting in data from the two focal planes being

interlaced in the experimental data set.

The labels and geometry for this method appears in figure 3.6. Here, the flow angle

is separated into the planar and axial components (θ and ϕ, respectively) and the

general angle is designated as α. The measurement relies on taking cross-correlations

at two focal planes, designated as the High and Low planes (henceforth Ha and Lb,

where a, b = 1, 2, specifying which of the 4 possible positions) separated by distance

R⃗z. The total distance between two focal volumes (P1 and P2) is R⃗ which can be

determined from the in-plane projections R⃗planar and R⃗z with equation 29.
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R⃗ =
√
R⃗2

planar + R⃗2
z (29)

In order to perform the axial angle-finding analysis a series of points about a

central pixel are chosen and the intensity vs. time traces for all pixels are extracted

from the data set. These traces contain data for both focal planes in alternating time

steps so each original time trace is unstitched into two time traces corresponding

to data at a single focal plane each. Between a single pair of pixels there are four

time traces (two pixels and two focal planes each) and a resulting 12 possible cross-

correlations (see Figure 3.7). Of this set of cross-correlations, only four are used to

determine the axial angle and another four to determine the velocity. Two maps,

referred as the, ‘forward,’ and, ‘reverse,’ maps, created from mapping the maximum

amplitude of the (H1 : L2 − L2 : H1) and (H2 : L1 − L1 : H2) functions. Subtracting

reverse cross-correlations removes the influence from auto-correlations in the cross-

correlation functions. These maps can be fit to equation 30 to return the planar

and axial flow angles. To determine the flow speeds the measured delays (τPlanar) of

single-plane cross-correlations (H1 : H2, H2 : H1, L1 : L2, and L2 : L1) were utilized

in conjunction with equation 31.

Separating equation 27 into the planar and axial components yields equation 30.

G(τmax) =

{
1

Nz

exp

[(
R2

ω2
z

)
sin2ϕ

]}
∗
{

1

Nxy

exp

[(
R2

planar

ω2
xy

)
sin2θ

]}
(30)

Equation 30 is fit to experimental data, yielding flow angles θ and ϕ, which can

then be used to in conjunction with in-plane cross-correlation fits (utilizing equation

19, yielding τplanar) to determine the amplitude of the flow velocity V via equation

31.

V =
Rplanar

τplanar cos(ϕ) cos(θ)
(31)
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Figure 3.6: Diagram of labels used in axial flow analysis.

Figure 3.7: Diagram of cross-correlations possible in axial flow analysis.
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Contrary to the angle-fitting algorithm, which uses forward and reverse cross-

correlations simultaneously, the two correlation maps are treated separately here to

yield a pair of results for θ and ϕ, with the appropriate rotation operation performed

for fits in the reverse direction. The average value is used as the final experimentally-

fit value.

A result of the mapping procedure yields an experimental amplitude map as seen

in figure 3.8. The shape of this plot is an extension of the analagous plot generated

in the angle-fitting algorithm in the strictly in-plane case in that the direction of the

in-plane ridge corresponds to the planar flow angle. The position of the peak in the

amplitude map is indicative of the axial flow angle.

There can be derived a set of equations to yield out-of-plane flow direction from

the dependence on flow angle of the peak position, analogous to what has been demon-

strated in equation 26. This approach is mathematically sound, but in practice proves

prohibitively difficult for the same reasons that the in-plane angle fitting by way of

peak positions was abandoned. For a given cross-correlation the peak position is es-

sentially the position of the maximum value, which, for strongly correlated signals,

is straightforward to determine. However, for weakly correlated signals, the resulting

cross-correlation is essentially noise and the position of the maximum of that signal is

random. It then becomes difficult to determine which peak positions can be trusted

without some sort of scaling factor taking into account the strength of the correlation.

This is exactly what occurs by fitting the peak amplitude as a function of spacing

vector angle. Those signals showing a strong correlation rise above the background

while the weakly correlated signals consistently yield low amplitude correlations and

are consequently much less likely to interfere with the fitting routine.
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(a)

(b)

Figure 3.8: 8(a) Measured cross-correlation amplitude map for a single central pixel
and set of surrounding pixels in a second focal plane in a simulated data set. 8(b)
Calculated map fit to 8(a) using equation 30. Result is fit with in-plane angle of
θ = π\4.07 radians and axial angle ϕ = π\2.00 radians to expected values of θ = π\4
and ϕ = π\2
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3.4 Results and Discussion

3.4.1 Noise Tolerance

Cross-correlations have the distinct advantage of being able to accurately measure

steady-state properties by trading precision in time for the often more important

tolerance to noise. While particle tracking algorithms can more precisely determine

the translation of a particle between one frame and the next, it comes at the cost of

having to have particles bright enough to locate in every frame, requiring a S/N of

around 4 to determine individual particle displacements with an average error of less

than 0.1 pixels/frame[190].

The advantage goes to correlation analysis when the average across a larger time

range is acceptable and steady-state values are desired. Only the intensity fluctua-

tions corresponding to actual physical events are correlated - those due to noise are

uncorrelated. In addition, fluctuations from particles making the transit through only

one of the two focal volumes in a cross-correlation yield no contribution to the result-

ing correlation function. In particle tracking, out-of-plane diffusion seriously limits

trajectory lengths.

An improvement in S/N of each image will improve the quality of the analysis in

both correlation and particle tracking methods. For the most difficult case of fast-

moving, dim particles, one can have longer exposure times or take more frames of

data, both of which benefit correlation analysis, while for particle tracking, only the

former is an available option. Because the particles must be located in each individual

frame, more frames with too low a S/N will be of no benefit.

The resulting error in measuring flow speeds demonstrates the ability of the al-

gorithm to tolerate a low S/N in the input image data. Simulations indicate that

by sampling 10,000 frames, the maximum tested, a S/N as low as 1.4 will generate

fits as good as any higher S/N value (see Figure 3.9). At these intensities, it is very

difficult to find the particle locations, rendering particle tracking even more difficult,
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Figure 3.9: Relative error of the flow map with simulated data as a function of S/N
of individual frames (eq. 24) and number of frames sampled. With 10,000 frames
sampled a S/N as low as 1.4 is sufficient to obtain a correlation map comparable to
higher S/N values.
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if not impossible (see figure 3.10).

While particle tracking does allow one to know the exact positions of the imaged

particles in each frame of data, this information does come at the cost of necessary S/N

and often is unnecessary, especially for the application described here. For situations

where the locations of the particles is unimportant but rather the average motion of

the particles is of concern, the use of cross-correlation flow mapping allows the use of

data with lower S/N with improved accuracy.

3.4.2 3-D Flow Mapping

As described previously, 3-D flow mapping is achieved by stacking the 2-D flow maps

determined at the known axial distances at which the image stacks were recorded.

From this determination of the flow volume, slices along any arbitrary vector or axis

can be taken. The resulting plots of a microfluidic device show a radially symmetric

cross-section with flow fastest in the center. To our knowledge, this is the first time the

flow for an entire microfluidic device has been imaged using a correlation method. The

obvious applications of this method include the straight-forward manner that devices

can be screened for asymmetries and anomalies inherent in device manufacture.

The 3-D flow maps measured for a rectangular channel appear in Figure 3.12.

Stacked correlation maps can be arbitrarily sliced to yield different views of the of

the flow throughout the device volume. Here slices have been taken along three

perpendicular axes. Flow speeds at different positions in the channel can be fit to the

analytical solution for laminar flow in a rectangular channel [197, 27].

νx(y, z) =
ν∗

2
b2

{
1− z2

b2
+ 4

∞∑
n=1

(−1)n

γ2
n

cosh[γn(y/b)]

cosh[γn(a/b)]
cos
(
γn

z

b

)}
(32)

γn =
π(2n− 1)

2
(33)

in which a and b designate the half widths of the rectangular channel and ν∗ is the
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(a)

(b)

Figure 3.10: Pair of simulated images with identical bead positions with S/N ratios
of 31.4 (10(a)) and 1.4 (10(b)) from a stack of 10,000 under a simulated parabolic flow
between 0 and 1 pixels/frame towards the top of the image. With sufficient frames
the flow map of both image stacks can be determined with an error less than 0.02
pixels/frame.
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Figure 3.11: Velocity profiles taken along axes perpendicular to flow. 11(a) Data
(circles) taken for varying z positions from bottom of channel (gray) to center (red).
11(b) Data taken along varying y positions from left (gray) to center (red) of channel.
Fits to equation 32 in black.

characteristic velocity of the channel. The infinite series arises from the analytical

solution for the correction of flow in a rectangular channel versus two infinitely-

spaced parallel plates. Velocities were averaged along the flow direction at the desired

positions to yield the data plotted in Figure 3.11. As seen, the data fit the expected

form for a rectangular channel very well along the in-plane axis (xy) while there is

a reasonable fit along the axial (z) direction. This slight asymmetry is suspected

to be due to nonlinearities in the translation of the piezo nosepiece or influences of

out-of-focus light in the correlation analysis. The curves approach, but do not reach,

zero at areas of the channel near the wall. Without sufficient flow between the two

focal volumes, there is little cross-correlation between the two resulting signals.

Experiments were commonly run at high enough concentrations of tracers to ob-

scure the positions of the particles. At these higher concentrations the entire area

of the channel is occupied with multiple particles at once, avoiding any danger of

missing subtle effects in the channel from lack of recorded particle paths.

Because of the advantages afforded by correlation analysis, the option to reduce

the size, and therefore brightness, of the tracer particles becomes possible. A single

data frame and the resulting flow map appear in figure 3.13 While 100 nm radius

beads were the typical tracer of choice, it was possible to image flow speeds with
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Figure 3.12: Slices of 3-D flow volume taken along perpendicular axes. Flow in
channel was parallel to x-axis.
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Table 1: Values used in the determination of the hydration radius of Alexa 488-
labeled Anti-IgG. † - the diffusion constant (D) and hydration radius (Rh) of the free
dye were taken from [1] and the diffusion time (τD) was measured experimentally.

Determination of Antibody Size
Sample τD(sec) D(m2s−1) Rh(nm) Remarks

Alexa 488 4.718 (± 0.452) x 10-4 2 x 10-10 1.4 †

Anti-IgG 6.02 (± 1.79) x 10-3 1.57 (± 0.526) x 10-11 15.6 (± 4.6)

20 nm radius beads and anti-mouse IgG antibodies conjugated to approximately 5-7

Alexa 488 dyes. Diffusion of the antibodies was retarded by adding 10% PEG 8K

to the solution in order to decrease diffusion of the tracers out of the focal plane.

FCS indicates the radius of hydration for these particles to be Rh = 15.6 ± 4.6

nm. The hydration radius was determined through standard single-point FCS by

ratiometrically comparing the diffusion time of the labeled antibody to a known stan-

dard, here free Alexa 488 dye. Details of the experimental data appear in table 1.

From the experimentally-determined diffusion times (τD) and the known diffusion

constant (D) of the Alexa 488 dye standard, the diffusion constant of the antibody

was determined with equation 34. With knowledge of the solution parameters the

hydration radius can then be determined with the Stokes-Einstein relationship (equa-

tion 35) [1]. The relevant parameters in equation 35 are kB, the Boltzmann constant

(1.3806503∗ 10−23m2 kg s−2K−1), T the temperature in Kelvin, η the viscosity of the

solvent (8.94 ∗ 10−4N m−2 s for water at 298 K), and Rh the radius of the particle

(m).

τD,1

τD,2

=
D1

D2

(34)

D =
kB T

6π η Rh

(35)
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(a)

(b)

Figure 3.13: 13(a) Single frame of Alexa 488-labeled IgG in 10% PEG solution
flowing towards top of image. 13(b) Measured flow for channel with labeled IgG as
tracers. The streaks in the flow map result from a less-than-ideal concentration of
tracers in the channel.
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3.4.3 In-plane Flow Vector Determination

The interesting parts of channels are rarely where things actually move in a straight

line. Here, we have calculated the flow vectors near a partial obstruction (position

indicated by blue circle) in a channel (Figures 3.14 and 3.15). The flow vectors follow

the expected path around the obstruction to recombine downstream with flow moving

faster at positions away from the obstruction than closer.

The accuracy for this method was probed by executing the analysis program on a

series of simulated image stacks generated for a range of flow angles. In each case the

flow angle about 49 points was measured and the results plotted in figure 3.16. The

resulting fits yielded the expected flow angle with high accuracy and precision. A fit

to a plot of measured angle vs. expected angle had a slope of 1.004 with R2 of 0.9998.

The largest standard deviation measured across the 49 points was 0.009753 radians.

In addition, the measured flow speed was 0.4965 pixels per frame (representing an

0.7% error relative to the expected value of 0.5 pixels per frame) with a standard

deviation of 0.0112 pixels per frame. The value for flow speed is especially relevant

because this measurement contains the errors for both the angle and delay contained

therein.

Demand for computational time is much higher for this method for two main

reasons- 1: this algorithm involves taking typically 10-25 pairs of pixels at each center

instead of a single cross-correlation in the above flow-aligned method; 2: each pixel

pair requires two cross-correlations, not just one. Even with these additional needs

the ability to measure flow vectors in a device without prior knowledge of the flow

direction at a particular point in a channel is, in practice, more useful than measuring

flows in a straight channel.
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Figure 3.14: Flow vectors around a channel obstruction (blue circle). For reference,
the green arrow indicates a flow at -2.01 radians relative to the x-axis and a speed of
287 µm/sec.
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Figure 3.15: Flow vectors in and out of the imaging area. For reference, the green
arrow indicates a flow at 1.576 radians relative to the x-axis and a speed of 80.9
µm/sec.
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Figure 3.16: Measured angle (black squares) and standard deviation (error bars,
49 data points) for simulated flow measured with the presented in-plane angle fitting
algorithm. The best-fit line (red) has slope, y-intercept, and R2 values of 1.004,
-0.004, and 0.9998, respectively (expected slope = 1).
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3.4.4 Axial Flow Vector Mapping

While in most microfluidic channels the flow is strictly planar, there are many cases

where the flow in the axial direction is significant. Especially for functional channels

incorporating vortices and other features or analogs for three-dimensional devices such

as filters or porous media the flow in and out of the focal plane is an important portion

of the total flow profile. As a result any flow-mapping technique should incorporate

a method for measuring these axial flow vectors.

Beginning with simulated data stacks with axial flows in the range of 0 to π

radians, the axial flow vectors were measured. The results of these measurements

appear in figures 3.17 through 3.19. Axial flow direction is best determined when the

angle is away from flow angles approaching totally in-plane. In that case the fitting

algorithm is essentially struggling to fit the peak of the amplitude map when the

peak exists outside of the local cross-correlation amplitude map (see equation 30 and

figure 3.17). This problem can be somewhat remedied by enlarging the generated

correlation map surrounding each point, but with the resulting trade-off that the

flow angle is averaged over this area. Alternatively the data can be taken for two

focal planes that are closer together in axial position, yielding increased sensitivity

for near-planar angles but decreased sensitivity for angles nearing purely axial.

The fits of planar flow angles are accurate for purely planar flow, as seen in figure

3.18 and previously in figure 3.16. As flow becomes more axial, however, the accuracy

for planar angles decreases. This can be seen in the resulting correlation amplitude

maps as a transition from a peaked ridge similar to that seen in figure 8(a) to a 2-D

Gaussian peak for the case of purely axial flow. This Gaussian peak is symmetric

with respect to rotation in the planar direction and as a result is difficult to detect a

planar flow direction when the amplitude map has a large amount of this character.

Even so, the contribution to the total flow vector from that in the planar direction

in a case such as this is diminished and so a poor fit under these condtions is less
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Figure 3.17: Measured axial angle (red) and standard deviation (error bars, 49
data points) for simulated axial flow measured with the presented axial angle fitting
algorithm. The indicated line is at the expected value for a slope = 1. Measured flow
angles for all but the most planar directions are close to the expected angle.
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Figure 3.18: Measured planar angle (red) and standard deviation (error bars, 49
data points) for simulated axial flow measured with the presented axial angle fitting
algorithm. The indicated line is at the expected value at π\2. Measured flow angles
for all but the most axial direction are close to the expected angle.
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Figure 3.19: Measured total speed (red) and standard deviation (error bars, 49
data points) for simulated flow measured with the presented in-plane angle fitting
algorithm. The indicated line is at the expected value at 1 pixel/frame. Measured
speeds best fit the expected values for axial angles away from the most planar axial
angles (0 or π radians) and the most axial (π

2
radians).
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detrimental.

Because the flow speed, as determined by equation 31, contains the error in the

measurement of both the axial and the planar flow angles, the fit to the expected value

for the flow speed is best when the errors in those two measurements are diminished.

As can be determined from the previous two graphs, the error in flow speed in axial

flow directions approaching purely planar is due to errors in the axial flow angle

measurement. The error in flow speed as the axial flow becomes more significant is

due to the error in the planar flow angle measurement as the axial flow becomes more

significant, but to one other additional factor. The speed is primarily determined

by the delay fit for in-plane correlations (τplanar in equation 31 from correlations

(H1 : H2, H2 : H1, L1 : L2, and L2 : L1) in figure 3.7) and corrected for the axial and

planar flow angles. Typically, when the correlation between the signals at two pixels

is strong, the value for τplanar is straightforward to accurately measure. However,

for cases where the flow is strongly axial there are few pixels in a single plane that

show strong correlations due to the small number of tracers that cross between both

pixels. In addition time for this transit is very short in these cases, leading to further

inaccuracy in the measurement of the flow delay. These shortcomings can be overcome

somewhat by incorporating flow delays between focal planes in cases of strong axial

flow, but even as the method stands the flow speed can be measured to within 10%

of the actual flow speed across a large portion of the axial angles tested.

To demonstrate this technique in an experimental setup flow was measured through

a channel designed to yield strong amounts of axial flow with the addition of shaped

barriers at an angle to the flow direction. As the flow moves down and under the bar-

rier the flow increases in speed and in axial displacement. A single region of interest

of a channel appears in figures 3.20 through 3.25.

Figures 3.20 through 3.22 show a general flow direction through an arm of the

channel with a significant axial contribution. This axial portion grows larger as the
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flow approaches the barrier. The magnitude of this total flow and separate axial and

planar contributions can be seen in figures 3.23, 3.24, and 3.25, respectively. The

planar contribution largely matches the mean of the vector plot of the two individual

focal planes, shown in figure 3.26. The vector projections overestimate the flow speeds

relative to the in-plane fits, which is to be expected due to the additional error in the

speed introduced with the incorporation of axial angle.
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3.4.5 Experimental Limitations

The eventual goal of the cross-correlation technique presented here would be to allow

for flow mapping in microfluidics with single dye molecules as probes. A crucial step

in that goal, the increased noise tolerance, has been presented. This demonstrates

a capacity for dimmer probes, which smaller probes will be more often than not.

Data presented for flow mapping with single antibodies containing 5-7 organic dyes

has shown that a particle containing a small number of organic dyes can be used as

tracers. However, dividing the apparent intensity of a dye-labelled antibody in figure

13(a) by the expected 5-7 dye molecules would place the already small signal from

these probes well into the dark counts of the CCD detector (apparent at the edges of

figure 13(a)).

These low count rates are largely limited by the small transmission of emission

through the pinhole array contained in the confocal scanning unit. At any instant a

diminutive percentage of the focal plane is illuminated and transmissive to emission.

There do exist other confocal scanning instruments with larger light throughputs

that improve this limitation. In addition, it is possible to perform the same cross-

correlation analysis on data collected in other geometries. The confocal scanning unit

allows for a narrow axial slice of the entire focal volume to be imaged at one time,

but other techniques exist to accomplish the same result. If the region of interest

is located strictly at the surface then total internal reflection (TIR) microscopy can

be utilized. For regions farther away from a TIR interface, planar excitation as is

commonly used in PIV techniques would be effective to limit the emission away from

the desired focal plane. In fact a PIV setup capable of high sustained frame rates

would be easily adapted to produce flow maps through the cross-correlation technique.

While the low count rates from small tracers can be overcome with better imaging

that is not the only issue regarding the use of these probes for flow mapping. The dif-

fusion constant of the tracer decreases with the radius of the tracer particle, obscuring
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Figure 3.20: Measured flow vectors in a microfluidic device with a large axial flow
contribution. The coordinates correspond to those pictured in figure 3.23 through
3.25. View 1 of 3.
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Figure 3.21: Measured flow vectors in a microfluidic device with a large axial flow
contribution. The coordinates correspond to those pictured in figure 3.23 through
3.25. View 2 of 3.
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Figure 3.22: Measured flow vectors in a microfluidic device with a large axial flow
contribution. The coordinates correspond to those pictured in figure 3.23 through
3.25. View 3 of 3.
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Figure 3.23: Measured total flow speeds in a microfluidic device with a large axial
flow contribution. The coordinates correspond to those pictured in figure 3.20 through
3.22.
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Figure 3.24: Measured axial flow speeds in a microfluidic device with a large axial
flow contribution. The coordinates correspond to those pictured in figure 3.20 through
3.22.
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Figure 3.25: Measured planar flow speeds in a microfluidic device with a large
axial flow contribution. The coordinates correspond to those pictured in figure 3.20
through 3.22. Compare to the results in figure 3.26.
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Figure 3.26: Mean planar velocity as determined by averaging in-plane flow speeds
of the two individual focal planes in used to generate figures 3.20 through 3.25 This
plot matches well with the planar flow projection appearing in figure 3.25.
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the motion due to flow with the particle diffusion. The diffusion is random and so

the average motion due to Brownian motion averages to zero, but a large amount of

diffusion greatly decreases the chances of a particle transiting from one focal volume

to the next without exiting the focal plane. Data showing the capacity to measure

flow speeds as a function of particle size appear in figures 3.27 through 3.30. These

results indicate that the length of the spacing vector chosen for flow mapping has little

bearing on the eventual results outside of the case of very large diffusion. Deviation

from the slope = 1 line at high flow speeds indicates a situation where the particles

exit the image region too quickly to be effectively measured. This final problem can

be somewhat mediated for very rapidly moving particles by using a very long imaging

area in the flow direction and a correspondingly long spacing vector.

As can be seen in figures 3.27 through 3.30, is it difficult to accurately map the flow

of particles when the flow rate is smaller than the average diffusion. An expression

for this value, DRMS, appears in equation 36.

DRMS =
kB T

π η Rh F P 2
D

(36)

Here, kB is the Boltzmann constant (1.3806503∗10−23m2 kg s−2 K−1), T the tem-

perature in Kelvin, η the viscosity of the solvent (8.94 ∗ 10−4N m−2 s for water at

298 K), Rh the radius of the particle (m), F the frame rate (Hz), and PD the pixel

dimensions (m). The resulting value for DRMS is in units of pixels per frame. In

order to decrease the diffusion the easiest variable to control experimentally is the

viscosity. As such, to yield acceptable flow maps for tracers the size of individual

antibodies (rh = 15 nm) the viscosity was increased by using 10% PEG 8000 solution

(η = 8.9 ∗ 10−3N m−2 s, [198])in the place of water for the solvent. Under similar ex-

perimental conditions (1 µm x 1 µm pixels, 100 Hz frame rates, ambient conditions)

with tracers 1 nm in diameter and 100 µm per second flow it would require a viscos-

ity of 1.3 ∗ 10−2N m−2 s, comparable to a solution of approximately 15% PEG 8000.
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However, in order to map the flow near the walls of a channel the flow rates would

approach zero. In the same situation, assuming a flow rate as low 1 µm per second

this would require a solvent viscosity two orders of magnitude higher (1.3 ∗N m−2 s)

corresponding to over 50% PEG 8000. This solution is possible to drive through a

microfluidic channel but difficult to control precisely.

As demonstrated in figure 3.29 and 3.30 it is quite straightforward to measure

flow speeds over 10 pixels per frame. Under the conditions tested this corresponds

to particle speeds of 1 mm per second. The confocal scanning unit has a maximum

frame rate of 360 frames per second, but a frame-transfer EMCCD such as the one

used here is capable of acquisition rates of over 1000 frames per second. Ignoring the

limitation of the confocal scanner, this pushes the maximum flow rate measurable by

this method to 10 mm/sec. It is possible to further improve this flow speed at the

cost of spatial resolution by increasing the pixel size.

In order to acquire reliable data for the in-plane and axial angle fitting algorithms

it is necessary that the particles not leave the sub-imaging area (typically a 21 pixel

x 21 pixel area) before yielding correlations across several pixels. Because of this

constraint the best results anecdotally come from data with flow rates between 0.5

and 5 pixels/frame in the focal plane. With the typical experimental dimensions

mentioned above this corresponds to flows of approximately 50 to 500 µm per second.

In addition, a similar constraint on the flow speed is necessary in the axial direction.

Exacerbating this issue is the limited focal plane switching rates attributed to the

piezo nosepiece. The absolute speed is dependent on flow angle, but for the worst

case of purely axial flow and focal plane spacing of 4 µm this corresponds to an axial

flow rate of 266 µm/sec. In practice slower flow speeds are easier to measure correctly.

The motion of the piezo nosepiece imparts an important uncertainty the axial flow

measurements. As mentioned, the maximum speed of the nosepiece used in these ex-

periments is near the 33 Hz used in these experiments. A single cycle of the nosepiece
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yields a pair of images (one for each focal plane). Rapidly changing the voltage ap-

plied to the piezoelectric material caused ringing of the nosepiece and so the driving

function was not a true square wave with steps of infinite slope. Instead the travel

time between the two voltage values was 3.0 ms with 12.0 ms at a constant voltage.

The CCD had only 160 µsec between frames and the acquisition was aligned in phase

to the motion of the nosepeice as best as possible. Under ideal phase alignment, 19%

of each frame acquisiton represents time that the nosepeice is in motion. The ability

to control the dead time of the CCD or a piezo nosepiece capable of more rapid repo-

sitioning would allow this error to be avoided. Even so, the axial flow measurements

represent an average between the two focal planes and a small amount of uncertainty

in the position between the two focal planes should not have a detrimental effect on

the accuracy of these measurements.

Cross-correlation time series analysis is, at its core, an average over the measure-

ment window. For systems where dynamic information at timescales between the ac-

quisition rate (tens of ms) and the experimental duration (seconds) is paramount, the

cross-correlation analysis is at a disadvantage relative to particle tracking algorithms.

However, in steady-state systems where the average value over the experimental time-

frame is acceptable, cross-correlations allow for an important improvement in noise

tolerance over particle tracking. In a particle tracking experiment the correction to

overcome a high-noise environment is to increase the exposure time for image acqui-

sition, which can lead to uncertainty in the particle position due to motion blurring.

On the other hand, the same correction for the cross-correlation method presented

here is to extend the data set. There exists a trade-off between uncertainty in parti-

cle positions (and therefore speeds) and time-averaging between particle tracking and

cross-correlation time series analysis.
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Figure 3.27: Measured flow speeds in simulated data for particle diameters of 10
nm with varying flow speed and spacing length. In each case a typical experimental
setup with pixels 1 µm on a side in the image space, 100 Hz frame rates, and water
as the solvent was used. Red line indicates the average diffusion per time step in the
simulation and the dashed black line the expected results.

88



Figure 3.28: Measured flow speeds in simulated data for particle diameters of 50
nm with varying flow speed and spacing length. In each case a typical experimental
setup with pixels 1 µm on a side in the image space, 100 Hz frame rates, and water
as the solvent was used. Red line indicates the average diffusion per time step in the
simulation and the dashed black line the expected results.

89



Figure 3.29: Measured flow speeds in simulated data for particle diameters of 100
nm with varying flow speed and spacing length. In each case a typical experimental
setup with pixels 1 µm on a side in the image space, 100 Hz frame rates, and water
as the solvent was used. Red line indicates the average diffusion per time step in the
simulation and the dashed black line the expected results.
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Figure 3.30: Measured flow speeds in simulated data for particle diameters of 1000
nm with varying flow speed and spacing length. In each case a typical experimental
setup with pixels 1 µm on a side in the image space, 100 Hz frame rates, and water
as the solvent was used. Red line indicates the average diffusion per time step in the
simulation and the dashed black line the expected results.
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3.5 Conclusions

Presented here is a novel method for determining flow vectors through pixel-pair

cross-correlation analysis. In conjunction with a Nipkow disk confocal scanner, 3-

D flow maps in a microfluidic device were determined as well as flow vectors in an

area with inhomogeneous flow vectors. This method has also demonstrated a large

tolerance for noise and low fluorescence intensity from the tracer particles. Because of

the generality of the algorithm put forth here, the use of this method on systems other

than microfluidic devices should be straightforward. In addition, cross-correlations

are not limited to flow phenomena. By fitting the cross-correlation to other models

(diffusion, hindered diffusion, etc.) this method can be applied to a large number of

other systems. With the use of brighter dyes and appropriate experimental conditions,

this method could well be applicable to measuring flow rates over large fields of view

in three dimensions with single organic dyes as tracer particles.
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CHAPTER IV

ADVANCED WIDEFIELD CONFOCAL MICROSCOPY -

SIGNAL EXTRACTION AND SUPER-RESOLUTION

IMAGING

4.1 Introduction

While previously presented work in this thesis has focused on using widefield confocal

microscopy as a tool for mapping microfluidic flow, the generality of the data collection

process allows for straightforward adaptation of many other analysis methods to

work in conjunction with or addition to the previously reported methods. These

methods all share a common foundation - data is collected as a time series of images

which yield intensity vs. time traces at each pixel. The analysis of these traces are

what define the different techniques. Here we report two additional techniques which

result from alternative methods of analysis. The first relies on the phenomenon

of dynamic fluorescence enhancement due to dark state depletion by a secondary

laser, resulting in increased sensitivity for modulatable probes. The second utilizes

higher-order statistics in conjunction with stochastic blinking processes to generate

super-resolution images from a typical single-point confocal microscope.

4.2 Fluorescence Modulation Signal Extraction

4.2.1 Introduction

A constant challenge with fluorescence microscopy is isolating those fluorophores of

interest above the background. This problem is made more difficult when imaging in

complex media, such as living tissues, which themselves will fluoresce under visible or

near-UV excitation. While increasing the number of the fluorophores of interest will
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increase signal above the background, often these fluorophores exist in very low copy

numbers and retaining the information in the heterogeneity of the probes is desired.

In addition an increase in the single-molecule brightness of the fluorophores of interest

will yield a greater signal, but this is a difficult problem that many groups continue

to work towards.

An intriguing solution to the problem of signal sensitivity has been developed

by members of this group [165]. It has been shown that increasing the excitation

intensity increases the return of some molecules, namely DNA-templated silver clus-

ters, from the dark state back to the emissive state [155]. This transition has been

further characterized, confirming a transient absorption in the near-IR on the mi-

crosecond timescale for these molecules [164]. Excitation of this transient dark state

with secondary irradiation pumps the electron back into the singlet (emissive) man-

ifold, resulting in a decrease in the dark state lifetime and increased emission rates

[165]. This secondary illumination is of a longer wavelength than the fluorescence, in

contrast to similar techniques that use two coaligned lasers of higher energy than the

fluorescence [178, 180].

The increase in sensitivity towards desired probes over the background is accom-

plished through lock-in detection. The signal of interest is modulated at a known

frequency and detection is tuned to amplify signal carrying this specific frequency.

Given time series data f(t), the intensities at a range of frequencies F (ν), known as

the power spectrum, can be determined through the Fourier transform (equation 37).

F (ν) =

∫ ∞

−∞
f(t)e2πiνtdt (37)

By mapping the power at the desired modulation frequency as a function of spatial

position an image can be produced that extracts signals from only those emitters that

undergo fluorescence modulation.
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The range of probes that can be modulated is a small subset of the large num-

ber of emissive molecules. DNA:Ag nanodots are particularly adept at this process

[165]. Other common fluorophores will also undergo this process, but at much higher

secondary laser illuminations [44]. Common organic fluorophores investigated by

Ringemann, et. al. had typically high emission quantum yields which limited the

amount of fluorescence enhancement that could be achieved. The opposite approach

proved more useful, using organic dyes with high triplet quantum yields and using

secondary illumination to deplete the triplet state and enhance fluorescence from the

singlet state [199]. While DNA:Ag nanodots show more enhancement, in addition

to the other useful photophysical characteristics, triplet-sensitized organic dyes are

much more amenable to chemical modification and thus are used in this work.

This fluorescence enhancement can be accomplished on rapid time scales, here ex-

tended to produce video-rate CCD data and kHz-rate single-point TCSPC data. For

experiments presented, Rose Bengal was used as the modulatable fluorescence probe.

This dye typically shows low fluorescence yield due to the high triplet quantum yield,

which allows for a large amount of fluorescence modulation. The low fluorescence

yield was overcome by coating large numbers of these dyes onto polystyrene beads to

increase the local concentration of dye.

4.2.2 Methods

4.2.2.1 Dual Laser Experimental Setup

The experimental schemes for dual-laser experiments are detailed elsewhere (see chap-

ter 2.8). For widefield measurements, primary illumination was achieved through a

Yokogawa CSU 10 confocal scanning unit (Figure 2.5) and the secondary laser was

aligned onto a dichroic mirror in the microscope turret. Emission was passed through

a band-pass filter before continuing back through the confocal scanning unit and to

the CCD detector. In the single-point case two laser beams were combined on a

dichroic mirror external to the microscope and then focused as a single laser beam
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(Figure 2.4). Emission was passed through the dichroic mirror and a band-pass filter

before continuing on to an optical fiber and APD.

For CCD-based data, subsequent frames were collected at high frame rates (typ-

ically 50 Hz) with modulation of the secondary laser at approximately 25 Hz by a

chopper. These movies were converted to intensity vs. time traces at each pixel and

processed wtih custom-written MATLAB scripts. The power at the peak modulation

frequency was mapped back onto the spatial position of the pixel to generate the

extracted images.

Single-point dual-laser data was collected with a TSCPC module. Modulation

was accomplished by passing polarized secondary illumination though an acousto-

optic modulator driven by an programmable function generator. This allowed the

modulation frequency to be tuned to any desired frequency. Typically 1-10 kHz

modulation frequencies were used. Analysis was again performed with custom-written

MATLAB code.

For data presented here all beads were spin-cast in 5% PVA (poly(vinyl alcohol))

onto standard glass coverslips.

4.2.2.2 Synthesis of Rose Bengal-functionalized Beads

Functionalized beads were synthesized through a modification of established methods.

A synthesis schematic appears in Figure 4.1. The free carboxylate on Rose Bengal

was transformed into the hexanoic acid ester(1) by refluxing free Rose Bengal and

6-bromohexanoic acid (1:2 molar ratio) in 70% Acetone for 18 hrs [200]. The reaction

mixture was acidified with 5% aqueous H2SO4 and then extracted with chloroform.

The chloroform extract was evaporated to dryness and final purification was done by

column chromatography (80:20:1 to 50:50:2 Hexanes:Ethyl Acetate:Acetic Acid).

This product was transformed to the N -Hydroxysuccinimide ester by co-dissolving

1 with N -hydroxsuccinimide (1:2 molar ratio) in dimethylformamide (DMF). Two
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Figure 4.1: Schematic of synthesis of Rose Bengal-functionalized polystyrene beads.
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equivalents of EDC (1-ethyl-3-(dimethylaminopropyl)carbodiimide) were added and

stirred overnight. The DMF was removed in vacuo. The residue was dissolved in

chloroform and washed with deionized water, 1 M NaOH, and brine. The organic

layer was dried, filtered, and concentrated by approximately half before triturating

with diethyl ether, producing a precipitate 2 [201].

Amine-functionalized beads 3 were synthesized in a similar manner as the amine

linkage forming 2. Into MES (2-(N -morpholino)ethanesulfonic acid) buffer (50 mM,

pH = 6.1) was dissolved 1,6-diaminohexane to yield a final concentration of 10 mM at

0 ◦C. Carboxylate-modified beads were dissolved to give a concentration of 25 mg/mL

and EDC added to final concentration of 12 mg/mL. After 2.5 hours stirring the

beads were recovered by dialyzing against 0.1 M NaCl (100-500 MWCO membranes,

3x changes over 24 hrs), yielding 3 [202].

The final Rose Bengal-functionalized beads 4 were formed by codissolving 2 and 3

in dimethyl sulfoxide (DMSO) for 2 hours in a round-bottom flask in a sonicator. The

product was isolated by centrifigation with multiple rounds of washing [203]. Char-

acterization was perfomed through dynamic light scattering (DLS) and fluorescence

correlation spectroscopy (FCS).

4.2.3 Results and Discussion

Characterization by DLS and FCS indicated that Rose Bengal beads aggregated and

possibly cross-linked during the synthesis procedure. The beads were of 70 nm nom-

inal diameter. Experiments run after functionalization indicated a diameter of 180

nm and 300 nm by DLS and FCS, respectively. While ideally the diameter should

not change a significant amount through the functionalization procedure, the actual

diameter of these particles was not of great consequence to the subsequent experi-

ments.

Widefield modulation of the Rose Bengal beads was accomplished in the confocal
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scanning setup. As can be seen in figures 4.2 and 4.3 and subfigures, the constant

background obscuring the modulated bead is suppressed by the modulation extraction

procedure. This same procedure can be accomplished in a binned manner such that

subsets of frames were combined to produce a single extracted frame, resulting in

dynamic information up to approximately one-tenth the maximum frame rate of the

CCD, easily approaching video-rate data.

Because this procedure takes image stacks as both input and output, the type of

data is largely insensitive to the details of the experiment. In addition, there exists

the power to couple this method with particle tracking, widefield cross-correlation

microscopy, or other image analysis procedures to output results with greater sensi-

tivity to the probe of interest. This is especially important in biological samples that

have large amounts of non-modulatable background.

Single-point modulation measurements allowed the modulation rate to increase

from the 10 to 100 Hz possible with CCD imaging to 10 kHz. Fourier tranforms of

TCSPC time traces of spin-cast Rose Bengal beads modulated at various frequencies

appear in figure 4.4. The data from these modulated time traces can be selectively

amplified at times during secondary illumination and attenuated for times under only

primary illumination, resulting in a lock-in amplifier operating at rapid timescales.

Amplified data can then be binned and longer timescale processes for modulated

fluorophores selectively investigated.

To illustrate this procedure, consider a system containing both modulatable and

unmodulatable fluorophores in solution. If the sizes, and therefore diffusion timescales

of the two fluorophores are similar and there exists a large amount of spectral overlap,

neither the fluorescence correlation characteristics nor the spectral differences can be

used to separate information from these two molecules. In a biological system the

native non-modulatable fluorophores would be at a higher concentration, obscuring

the signal and fluctuations due to the modulatable fluorophore of interest. With the
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Figure 4.2: Widefield Fluorescence Modulation Signal Extraction: 2(a) Composite
experimental and simulated fluorescence image. Modulation data was experimentally
collected and later added to large constant background; 2(b) Intensity vs. time traces
for pixels chosen in 2(a). Modulation is apparent in red (top) trace, taken near the
secondary laser, but not in bottom (green) trace, taken away from the secondary
laser; 2(c) Resulting Fourier Transform of the time trace from 2(b) showing peak at
modulation frequency of 25.6 Hz. The resulting image appears in figure 4.3
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Figure 4.3: Widefield Fluorescence Modulation Signal Extraction: 3(a) Averaged
image of entire image stack. Arrow indicates modulated region; 3(b) Extracted image
made through plotting power at 25.6 Hz throughout image space. Arrow indicates
modulated area that is much more intense relative to constant background compared
to 3(a). Representative data appears in previous figure.
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addition of fluorescence modulation, those photons arriving during times of secondary

illumination are amplified and those arriving during times of primary excitation only

are suppressed. Secondary illumination modulated at a frequency of 100 kilohertz

would yield a fluorescence signal that can be demodulated at that frequency, then

binned at 100 µsec (corresponding to a 10 kilohertz frequency). This demodulated and

binned time trace can be used to generate correlation functions for processes longer

than the bin time, including diffusion, which occurs on timescales of milliseconds in

a typical FCS setup. As a result, the FCS signal from the desired fluorophore only

can be isolated from a complex system precluding typical analysis.

This technique can be similarly extended to selectively obtain dynamic informa-

tion from CCD data. Imaging rates for this experiment would be 2-5 times that of

the modulation frequency. By demodulating over a series of frames representing 2-5

times the modulation period, a demodulated image over 4-25 times the original frame

rate is obtained. For a CCD camera capable of 500 frames per second, demodulated

images at rates from 40 Hz up to 125 Hz can be obtained. These demodulated image

stacks can further be utilized as input for particle tracking or widefield correlation

analysis with the added benefit that only those emitters that show a modulation

signal are retained in the demodulated images.

4.2.4 Conclusions

The work presented has shown the compatability of widefield confocal imaging with

emerging fluorescence modulation techniques. The signal from modulatable fluo-

rophores can be enhanced over the static background signal in a manner that allows

for investigation of dynamics on the tens of milliseconds timescale. In addition, the

foundation for work to utilize this technology in a sub-millisecond timescale has been

completed, which could potentially be an asset for increased sensitivity in experiments

such as FCS in living systems.
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Figure 4.4: Single-point Fluorescence Modulation Signal Extraction: Fourier trans-
forms on binned TCSPC data for Rose Bengal beads modulated with a secondary
laser frequency of 25.58 Hz (4(a)), 1 kHz (4(b)), and 10 kHz (4(c)).
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4.3 Super-resolution Imaging

4.3.1 Introduction

While fluorescence microscopy contines to be a widely popular technique for investi-

gating living cells, microscopic structures, and even whole multicellular organisms in

three dimensions, the technique is limited by its inability to resolve structures smaller

than the diffraction limit. This limit, first described by Ernst Abbe in 1897, is around

200 nm for visible light [8]. Other microscopic techniques, such as EM, AFM, and

STM, allow for higher spatial resolution down to the molecular level, they are not

compatable with imaging living cells.

Multiple new techniques (STED, SIM, 4Pi, I5) have appeared in recent years that

have overcome the diffraction limit with the use of specialized imaging equipment

[91, 84, 85, 102, 204, 205, 206]. Techniques expoloiting stochastic photoswitching

processes (PALM, STORM, ...) avoid the specialized equipment but require long

acquisition times and limited fluorophore selection [109, 110]. A more in-depth review

of the established techniques appears in section 1.6.

Recently Weiss, Enderlein, et.al. have reported their SOFI technique, which uses

higher-order statistics analysis of fluorescence fluctuations arising from stochastic

blinking of quantum dots [45]. The power of this technique was demonstrated with a

5-fold enchancement in resolution through analysis of movies taken with a standard

CCD-equipped widefield fluorescence microscope. The apparatus is arbitrary and

insensitive to the actual emitter, required that the emitters demonstrate independent,

stochastic fluctuations in fluorescence output at timescales longer than the acquisition

time step. This pioneering work relied on the power-law blinking statistics of quantum

dots, which will demonstrate fluorescence itermittancy at all timescales. This allowed

the use of a standard EM-CCD camera for acquisition, which is typically limited to

frame rates around 1000 Hz (1 ms time steps).

While live-cell imaging has been accomplished with quantum dots, the large size
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and native bioincompatability of these emitters make them less than ideal for many

biological applications. A large body of work exists concerning the use of organic dyes

as fluorophores in a biological context as well as the excellent biocompatability and

genetic encoding available with fluorescent proteins. For this super-resolution tech-

nique to see wide adoption in cell biology studies the technique ideally should utilize

such well-characterized fluorophore systems. The majority of organic fluorophores,

fluorescent proteins, and DNA-templated silver clusters demonstrate the necessary

fluorescence itermittancy but at much shorter (< 100 µsec) timescales [10, 36, 30, 37].

These fluorophores are much more compatable with live-cell imaging and their fluores-

cence fluctuations can be detected with the use of TC-SPC techniques, which allow

for nanosecond or greater time resolution. This adaption to utilize faster blinking

timescales requires that the data be acquired serially - a geometry commonly used in

a typical confocal microscope.

Here we will demonstrate the extension of SOFI to work with common biocom-

patable fluorophores in a standard single-point confocal geometry. By recording an

intensity vs. time trace at each acquisition point and later analyzing these data a

super-resolution image can be reconstructed.

4.3.2 Theory

Following the formalism of Dertinger et. al, for N independent emitters centered at

rk, the time-dependent fluorescence signal at position r can be expressed as the con-

volution of the distribution of the fluorescence source and the point-spread function

(PSF) of the system (U(r)):

F (r, t) =
N∑
k=1

U(r− rk) ϵk σ(t)k (38)

with ϵk the constant molecular brightness and σ(t)k the time-dependent fluorescence

fluctuation of emitter k at time t. The PSF of the system can be approximated as a
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3D Gaussian at position (cx, cy, cz):

U(r) = exp

(
−(x− cx)

2 + (y − cy)
2

2ω2
o

− (z − cz)
2

2ω2
z

)
(39)

with ωo and ωz describing the radius in the planar and axial directions, respectively.

More specifically, these values are equal to the distance from the center of the Gaussian

to where the intensity falls to 1/e2 times the maximum height, known as the e2 radius.

When approximating a PSF as a Gaussian, the width of the PSF is given as the e2

diameter.

Given time-series data for a single position F (r, t), the nth order autocorrelation,

Gn(r, τ1, . . . , τn−1) is given by

Gn(r, τ1, . . . , τn−1) = {δF ((r), t) δF (r, t+ τ) . . . δF (r, t+ τn−1)} (40)

where the brackets indicate an average over all time, t. Cumulants of 2nd and 3rd order

are equal to the correlation function of the same order. As a result the correlation

function is sufficient to observe a decrease in PSF width by transforming from U to

Un for the nth-order correlation. The width of the resulting Gaussian transforms from

ωo as in equation 39 to ωo/
√
n, resulting in a

√
n decrease in the size of the PSF.

However, for higher-order correlations, the included lower-order correlations (e.g. the

2nd order correlation terms contained in the 4th order correlation that are subtracted

out to generate the 4th order cumulant) obscure the expected sqrtn decrease in PSF

width by the lower-order correlations.

To obtain super-resolution in this case, the correlation is not sufficient. Instead,

what must be used is the higher-order cumulants (Cn), which do not contain these

lower-order cross-terms. The cumulants can be expressed in terms of correlation

functions as seen in equations 41 through 43, shown up through the fourth order

cumulant.
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C2(r, τ1) = G2(r, τ1) (41)

C3(r, τ1, τ2) = G3(r, τ1, τ2) (42)

C4(r, τ1, τ2, τ3) = G4(r, τ1, τ2, τ3)

−G2(r, τ1) ∗G2(r, τ3)−G2(r, τ1 + τ2) ∗G2(r, τ2 + τ3)

−G2(r, τ1 + τ2 + τ3) ∗G2(r, τ2)

(43)

With the removal of the lower-order cross terms, the cumulant yields super-resolution

even in the case of multiple emitters contributing signal at a single position because

the cumulants of cross-terms go to zero. The cumulant can be described in terms of

the relevant physical characteristics by the following:

Cn(r, 0) =
∑
k

Un(r− rk) ϵ
n
k wk(0) (44)

with wk(0) a weighting function, based on the fluctuation properties of emitter k,

with the expression for the function dependent on the order n of the cumulant. As

previously mentioned, the transformation of the PSF from U to Un for the nth-order

cumulant yields a
√
n increase in spatial resolution.

Cumulants calculated by way of correlation functions becomes computationally

expensive very quickly with increasing order. For the SOFI technique only the am-

plitude of the cumulant is needed, which can be calculated by setting all of the time

lags to zero (τn = 0). Through this transformation the nth order correlation function

is reduced to the nth order central moment, µn, given as

µn = {F (r, t)− {F}}n (45)

where the brackets indicate an average over all time, t. The second-order central

moment is commonly known as the variance, the third the skewness, and the fourth

kurtosis. Strictly speaking, the first-order central moment is zero, but here the ‘first
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order moment’ will refer to the mean. These higher-order central moments can be

transformed into higher-order zero-delay cumulants κn for the nth order cumulant)

through a recursive formula (equation 46).

κn = µn −
n−1∑
k=1

n− 1

k − 1

κk µn−k (46)

The results of this formula for the first six cumulant orders appear in equations

47 through 52.

κ1 = µ1 (47)

κ2 = µ2 (48)

κ3 = µ3 (49)

κ4 = µ4 − 3µ2
2 (50)

κ5 = µ5 − 10µ2 µ3 (51)

κ6 = µ6 + 30µ3
2 − 10µ2

3 − 15µ2 µ4 (52)

As can be seen, the expressions for the cumulants above 4th order increase in com-

plexity quite rapidly with the 25th order cumulant in terms of central moments having

232 terms. Even with the complexity, for each fluorescence signal the higher-order

moments are straightforward to calculate, leaving the calculation of the zero-delay cu-

mulants to be simple multiplication of the necessary central moments. This reliance

on the central moment of a single time trace does have disadvantages regarding shot

noise that will be discussed later as well as possible methods to avoid such an issue.

It should be noted that for all Gaussian distributions the higher-order (n ≥ 3) mo-

ments, and therefore the higher-order cumulants, are zero. Herein lies the requirement

that emitters imaged by the SOFI method must blink on an experimentally-relevant

time scale. A constant emitter will generate a Gaussian emission distribution at
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sufficiently high count rates and therefore no signal at higher orders. Conversely a

non-constant emitter with m emission states will show an m-modal emission distribu-

tion and will yield signal at higher orders due to the non-Gaussian character of this

distribution. The more non-Gaussian this distribution is the greater the higher-order

signal will be.

4.3.3 Methods

Simulations to demonstrate the performance of the SOFI analysis were written in

MATLAB. A shared fluctuation trajectory was generated with the hmmgenerate func-

tion with a length typically 1000 points longer than the desired number of time steps

per pixel and amplitude either 1 or 0. Transition statistics between the emissive

and nonemissive states were equivalent for all emitters. A single CCD-type 2-D flu-

orescence image was generated individually for each Gaussian-modeled emitter. To

generate the intensity vs. time trace of length k for a single pixel, the amplitude

of each emitter was multiplied by a different k-length piece of the common fluctu-

ation trajectory. These products were then summed over all emitters, generating a

single intensity vs. time trace for that pixel. Poissonian shot noise was modeled by

multiplying this trace by a specified amplitude, adding a constant background to all

points in this trace, then choosing a Poissonian-distributed random number from a

distribution of mean equal to the base value at that time step using the poissrnd

function.

To demonstrate an increase in resolution an image area of 100 x 100 pixels with

width of 10 nm containing 6 stationary emitters was simulated. These emitters had

individual PSF widths of 203 nm corresponding to a diffraction-limited spot at 500

nm with a 1.2 NA objective. For this test case the emitters were placed in pairs with

distances 3.2, 2.0, and 1.0 times the width of the PSF apart. Pairs were placed 350 nm

or 250 nm apart from one another in the orthoganal dimension. Similar simulations
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were run with a single isolated emitter to show the expected decrease in PSF width

with increasing cumulant order.

Analysis was performed again in MATLAB. For each pixel in the image, the

needed central moments (with MATLAB’s moment function) were calculated from

the intensity vs. time trace for that pixel. These central moments were then utilized

in the necessary moments-to-cumulant function generated by equation 46 evaluated

by the MathStatica package in Mathematica. Values for the cumulants were mapped

back to the pixel location to produce the final higher-order cumulant super-resolution

images.

Experimental data was acquired on a homebuilt confocal system based around

an Olympus IX-70 inverted microscope. An experimental schematic and description

appears in chapter 2.4. The 632.8 nm line of a HeNe laser at 27.8 µW or 3.9 µW was

aligned into the back aperature of the microscope and reflected off a 670 nm long-

pass dichroic mirror and through a 100x oil immersion objective (1.4 NA, Olympus)

before exciting a sample. The emission from the sample was collected with the same

objective, passed through a 710/40X band-pass filter and 1.5x magnification lens,

before entering a 50 µm fiber aligned to the conjugate focal plane at the side port

of the microscope. This fiber served the purpose of the confocal pinhole as well as

transmitting light to an APD photodetector.

Signal from the APD was recorded with a TCSPC module controlled by custom-

written software (Microsoft Visual C++) that also controlled the scanning stage.

Data for an entire region of interest was acquired by raster scanning the single confocal

point in 25 nm steps across a 1 µm by 1 µm area. At each point TCSPC data was

recorded with a dwell time of 250 or 500 ms.

DNA:Ag emissive nanoclusters (630 nm/700 nm excitation/emission) were used as

the fluorophore for this study. These emitters were synthesized by combining single-

stranded DNA (5’- CCC TAA CTC CCC - 3’) with silver nitrate (AgNO3) and sodium
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borohydride (NaBH4) in a 1:6:3 ratio in aqueous solution. These solutions were spin

cast 5% PVA with 2-, 10-, or 100-fold dilutions onto standard glass coverslips and

imaged.

4.3.4 Results and Discussion

The properties of the SOFI method can be easily demonstrated with simulated data.

For the case of a single isolated emitter the square-root dependence of the width of

the PSF on the cumulant order can be seen in figures 4.5 and 4.6. This dependence

can clearly be seen in figure 4.6 where the data points fall very well along the expected

PSF/
√
n line for the nth order cumlant.

To demonstrate an increase in resolution leading to the separation of previously

unresolvable emitters, an array of 6 emitters was simulated as described in section

4.3.3. As can be seen in figure 7(a) the particles simulated were at spatial separations

ranging from nearly resolvable in the most widely-spaced case to a spacing resulting

in a single local maximum. With increasing cumulant order these emitters, thanks

to their stochastic blinking, can be more and more effectively resolved. Figures 7(b)

through 7(d) demonstrate this increase in resolution finally leading to the spatial

separation of the two most closely-spacedd points. Cross-sections taken along the

row containing the closest pair of emitters shows this progression from a single wide

Gaussian peak to separable emitters with nearly baseline resolution is shown in figure

4.8.

Due to the nature of the cumulant technique, those pixels containing a constant

signal, either from non-blinking fluorophores or random background, will not appear

in the higher-order images. This does have the advantage of selectively amplifying

blinking emitters over a constant signal. For those emitters that do blink, the ampli-

tude of the fluctuations is amplified by a greater and greater amount as the cumulant

order increases. In addition to brightness differences, it is also possible for a molecule
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Figure 4.5: Simulated data (circles) and Gaussian fits (lines) for a single isolated
emitter and higher-order cumulants. Orders pictured are the first through ninth, save
for sixth and eighth, omitted for clarity.
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Figure 4.6: Gaussian widths (circles) for peaks fit in 4.5. Red line represents
expected square-root dependence of PSF on cumulant order.
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Figure 4.7: Mean of emission from six emitters (7(a)) and cumulant maps of second,
fifth, and ninth order (7(b), 7(c), and 7(d), respectively).
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Figure 4.8: Normalized cumulant amplitude for increasing cumulant order for a
pair of closely-spaced emitters (separation = PSF width) appearing in figure 4.7. An
increase in cumulant order reveals a pair of emitters from below single Gaussian peak
and resolves with nearly baseline resolution with highest cumulant order.
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with a larger blinking amplitude to dominate an image at higher order and obscure

fluorophores with less symmetric blinking statistics.

Amongst simulated emitters with identical blinking statistics it is possible for

different emitters to yield different intensities in the cumulant maps. This can be

justified by recalling that the cumulants are extensions of lower-order statistics that

do not always track between different emitters - that is, it is very possible for two

signals to have the same mean but different variances, or the same variance but

different skew. In the case of synchronous (CCD-type) data, this has the effect of

suppressing whole emitters in a cumulant map. For asynchronous data it is single

pixels that are supressed, yielding maps containing emitters that appear like those

seen in figure 4.9.

The simulated data demonstrates the capacity of SOFI analysis to resolve closely-

spaced, stochastically-blinking emitters imaged serially instead in a parallel, widefield

geometry. From these simulations it is also apparent that the timescale of the blinking

is not directly tied to the success of the super-resolution imaging as long as the

acquisition time step is capable of detecting the blinking process (that is τBlinking ≫

τAcquisition). For CCD data acquisition this time step is on the order of milliseconds,

corresponding to a 1000 Hz frame rate. As a result the emitters that would work for

such an experiment are limited to those that show such long-lived blinking dynamics.

In order to extend this method to utilize molecules with faster blinking dynamics,

a sample of DNA:Ag nanoclusters embedded in a PVA film were imaged with a

scanning single-point confocal microscope. This geometry allowed for much greater

time resolution than the previously-used widefield method and the blinking dynamics

of the silver clusters on microsecond timescales could be utilized for SOFI analysis.

Autocorrelations of two selected pixels (figure 4.10) from such an experiment illustrate

the fluctuation timescale of tens of microsceconds utilized to generate a series SOFI

super-resolution images (figure 4.11).
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Figure 4.9: Autocumulant map for single emitter showing poor imaging that can
occur for some cumulant orders. The sixth order cumulant map 9(a) suffers from this
detriment while the seventh order cumulant map 9(b) and the fifth order cumulant
map (not shown) do not.
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Figure 4.10: Autocorrelations for two pixels in a SOFI experiment. The autocorre-
lation data can be fit to a single exponential in both cases with a fit of 14.1 µs (10(a))
or 24.9 µs (10(b)). These data were taken at left (10(a)) and right (10(b)) indicated
positions in figure 4.11.
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Figure 4.11: Experimental SOFI images of DNA:Ag nanclusters in PVA. Average
image pictured in 11(a) with 11(b) - 11(d) corresponding to the second, fourth, and
ninth order cumulant maps. Pixels in black correspond to autocorrelation data in
figures 10(a) (left) and 10(b) (right). 25 nm per pixel, 250 ms dwell time.
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From the resulting cumulant maps it can be seen that the SOFI analysis can result

in an increase in the resolution of multiple closely-spaced emitters. Data taken along

a single row of these images is shown in figure 4.12. This single row contains data from

three emitters at approximately the left edge, center, and right edge of the imaging

area. As can be seen by the curve corresponding to data from the mean image, the

inclusion of multiple emitters is apparent but they cannot be satisfactorally resolved

due to their close proximity. However, with higher order cumulants, up to the 9th

as pictured, the three individual emitters can be resolved. Higher cumulant orders

than utilized here would presumably continue this resolution improvement such that

these three emitters could be totally separated from one another with sufficiently high

cumulant order.

An interesting case illustrating the nature of high time resolution in the SOFI

analysis was noted in the data appearing in figure 4.13. The emitter at the lower-left of

the imaging area shows an atypical fluctuation process of 5.4 milliseconds in addition

to an 8.3 microsecond component more comparable to other emitters imaged in these

experiments. These two distinct timescales are apparent in the autocorrelation for a

signal at this emitter (figure 14(a)), contrasting with the more typical single-timescale

fluctuations seen in another emitter imaged by the same experiment (figure 14(b)).

This more typical emitter does show a small amount of fluctuation on the millisecond

timescale but at a much lower proportion (10.2% versus 45.4%).

By binning the time series data at 250 µsec the fast blinking dynamics are obscured

and the difference in the blinking dynamics becomes even more apparent. Histograms

of the emission distribution for the two emitters appear in figure 4.15. The histogram

for the typical emitter (15(b)) shows a distribution that can be nearly fit by a single

Gaussian. There is some non-symmetric Gaussian character but by and large a single

peak would do well to fit this data. However, for the non-typical emitter with a

long timescale component, there are clearly two or more components in the emission
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histogram (15(a)). These multiple components correspond to the average value of the

detected photon counts from the distinct emissive states of the molecule. As alluded

to previously, this non-Gaussian character in the emisssion distribution is what gives

rise to the signal at higher orders.

The manifestation of this difference in statistics due to processes at different

timescales can be seen in the two cumulant maps of figure 4.16. These figures are

both 9th-order cumulant maps of the same data set. Figure 16(a) was generated by

performing the SOFI analysis on photon data binned at 5 µsec, while figure 16(b) was

analyzed in the same way, but by binning at 500 µsec. This longer bin time obscures

the fast blinking dynamics of the typical emitters and only reveals the signal for the

emitters fluctuating at longer timescales. Approached from the other direction, in-

sufficient time resolution in the data acquisition obscures and eliminates the signal

from those emitters whose fluctuation dynamics are at more rapid timescales.

The trade-off with using faster timescales for analysis is increased influence of

shot noise in measurements. As such, it is difficult to reliably fit the PSF for a data

set across all cumulant orders without very high count rates or long bin times. For

this reason, the data that best illustrates the decrease in PSF width with increasing

cumulant order was that of the atypical long timescale blinking emitter. Shown in

figure 4.17 the sharpening of the Gaussian PSF is demonstrated with 2.5 µsecond

binning for several cumulant orders, while the remainder of the cumulants show noisy

results that are difficult to fit to a Gaussian peak. By binning at 250 µsec, all orders

can be fit to Gaussians, demonstrating the square root dependence of the PSF width

on cumulant order (figure 4.18). Extrapolating the data to the original PSF width

yields a value of 315 nm, which is slightly higher than the expected 250 nm (700 nm,

1.4 NA objective). The alternating odd-even behavior of the PSF width shown in

figure 4.18 is most likely due to an external interfering 60 Hz signal in the experimental

data. Even with these constraints the PSF width can be reduced to 100 nm for the
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10th order cumulant. Increasing the cumulant order utilized should increase this PSF

tightening to below 100 nm.

The previously mentioned role of shot noise in the measurements is one that is

retained in autocorrelation and autocumulant analysis. Shot noise and other random

fluctuations are only correlated at τ = 0 and are not present in measurements at

any other delay. In addition random noise is not correlated in space, such that two

synchronous signals separated in space will show no correlation due to noise. Weiss

and Enderlein utilized this fact to eliminate noise with cross-cumulant of synchronous

data obtained with a CCD camera. However, because the serial confocal data is

necessarily asynchronous, this method is precluded from being used here.

The previous researchers also avoided the influence of shot noise by utilizing au-

tocumulant results at other delays and integrating to estimate the value at zero delay.

The use of the zero delay value, however, is much more convenient computationally

than any other value. Cumulant functions decrease monotonically and the SOFI

analysis should not depend on which delay value is used as the relative values of the

cumulant amplitudes are what is of concern. As such one proposed method to avoid

the zero delay noise peak is to take the amplitude at the first delay rather than the

zero delay amplitude. Rapid time steps ensure that the value for the first delay will

be very close to that of the noise-free zero delay and would avoid the need to calculate

the cumulant function over a very large set of delays, which would be computation-

ally expensive. It may be possible, at least for some cumulant orders, to use the

same rapid method used here, where the central moment is quickly computed and

combined to generate autocumulants, but instead rely on the cross-moment between

an original signal and this same signal, but shifted a single time step.

Where before quantum dots proved to be the best choice of fluorophore for their

long blinking timescales, here the use of DNA:Ag sliver clusters was of particular

benefit. Attempts were made to use quantum dots to repeat the previous work in
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a serial manner, but this was made difficult by the tendency of the quantum dot to

enter a long-lived dark state during the acquisition. Images that showed only half

of a PSF or no signal over a large area where it was expected were common due to

this quirk of quantum dot emission. Silver clusters, however, rarely have such long-

time blinking and retain the extremely low photobleaching and high count rates of

quantum dots.

When adapting this method to work with organic dyes or fluorescent proteins pho-

tobleaching is going to be of particular concern. To fit data to a full 2-D Gaussian the

molecule must emit over the entire time that it is being imaged. Serial data collection

limits the time that a single flurophore is illuminated, but continuous emission over

a time of minutes is still necessary for effective imaging. It remains to be seen how

difficult it will be to realize the use of organic dyes or fluorescent proteins as labels

for confocal SOFI analysis, but as it stands DNA:Ag nanoclusters are particularly

well-suited for this technique.

4.3.5 Conclusions

Through the use of autocumulants generated from central moments, it is possible to

rapidly generate super-resolution images from asynchronous time series data. This

allows for the SOFI technique to exploit stochastic blinking in a much wider range

of fluorophores than the quantum dot systems available with CCD-based systems.

The vital qualification for using the faster blinking timescales of organic dyes, silver

clusters, or any other fluorophore is that the blinking timescale must be longer than

the acquisition time step. For CCD-based systems this timestep is, at best, hundreds

of microseconds for a very limited area. By allowing asynchronous time data from

single-point detectors fluorescence intermittancy timescales as fast as nanoseconds

are certainly possible due to the very high timing resolution of TC-SPC systems.

For practical purposes microsecond timescales are sufficient for detecting fluorescence
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blinking but one can imagine using even the antibunching dynamics on the picosecond

timescale to generate super-resolution images. While this would be a great difficulty

to experimentally realize the antibunching process would satisfy the qualifications for

the SOFI technique.

More importantly, opening higher-order cumulant image processing to faster dy-

namic processes greatly improves the applicability of this technique. An EMCCD

camera capable of single-molecule imaging at hundreds of frames per second and

quantum dot labelling is not universally adopted while scanning TC-SPC confocal

systems are almost required equipment for modern cell biology. In addition the wide

array of organic fluorophores as cell labels, which almost all blink on some accessable

timescale, allow the autocumulant approach detailed here to become a broadly useful

super-resolution microscopy technique. As has been demonstrated with simulations

and experimentally, the microsecond blinking timescale of DNA:Ag nanoclusters can

be used in a confocal geometry to obtain super-resolution images with this novel

confocal SOFI method.
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Figure 4.12: Data from the row corresponding to the 75 nm position in figure 4.11.
As the cumulant order increases it is apparent that the previously obscured emitters
can be increasingly resolved.
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Figure 4.13: Mean confocal image of DNA:Ag nanoclusters. The pixel indicated
at the lower-left corresponds to signal from an emitter showing atypical fluctuation
timescales. This is contrasted with the emitter at the upper-right indicated pixel in
later figures. 25 nm per pixel, 500 ms dwell time.
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Figure 4.14: Autocorrelations for the left (14(a)) and right (14(b)) pixels indicated
in figure 4.13. Each autocorrelation was fit to a biexponental. Fits (weight): 14(a) -
8.3 µsec (.546), 5.4 ms (.454); 14(b) - 5.0 µsec (.898), 4.6 ms (.102).
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Figure 4.15: Emission distribution histograms of data from the two emitters indi-
cated in figure 4.13 binned at 500 µsec. The atypical timescale fluctuations lead to a
multimodal distribution in 15(a) versus the more Gaussian distribution of 15(b).
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Figure 4.16: Resulting 9th order cumulant maps for the data presented in figure
4.13. The map in 16(a) was generated by SOFI analysis on data binned at 5 µsec,
capturing the fast blinking dynamics. The map in 16(b) was generated by SOFI
analysis on data binned at 500 µsec, obscuring all but the atypical long timescale
blinking dynamics of the emitter in the lower left.
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Figure 4.17: Gaussian fits of data with increasing cumulant order. An increase
in cumulant order results in a decreased PSF width. The original PSF is fit to a
Gaussian of width 324 nm and the 9th order to one of 172 nm.

130



Figure 4.18: Square-root dependence of the width of the Gaussian fit of the PSF
with respect to cumulant order. Data fit was binned at 250 µsec. Extrapolation to
the original image yields a PSF of 315 nm, which is slightly larger than the expected
250 nm.
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CHAPTER V

NOVEL NOBLE METAL FLUOROPHORES: SYNTHESIS

AND PHOTOPHYSICAL PROPERTIES

5.1 Introduction

The use of noble metals as fluorophores has increased greatly in recent years [207,

142, 138]. The strong photophysical properties, biocompatability, and unique Raman

enhancement all make this class of probes especially intriguing for continued study

[208, 209, 154, 153, 210].

Emission from noble metal materials was first observed in the solid state [30, 126,

125]. Efforts to exploit this phenomenon for more widely-applicable fluorescence tags

require the compounds are soluble in solution, preferrably water, and several suitable

materials to this end have been reported. In each case a scaffold must be employed in

order to template and protect the metal clusters from aggregation. Reported scaffolds

include extended polymer systems ([31, 154, 211, 152, 212, 213, 214]), nucleic acids

([149, 155, 215, 216]), and peptides ([217, 218]).

Interest in these particles from a fundamental perspective is driven by the ex-

treme influence of size effects on the photophysical properties of the material. These

effects are widely known regarding nanoparticles on the tens of nanometeres size scale.

Clusters of various sizes have been reported but certain numbers of atoms appear fre-

quently. In the case of dendrimer-encapsulated gold clusters, these ”magic number”

cluster sizes include Au5, Au8, Au13, Au23, and Au31 [31]. These cluster sizes can

be predicted by the jellium model by treating Au0 as an analagous atom to Na0 -

both atoms with a single 1s1 valence electron. Silver cluster synthesis has produced

a range of smaller AgN (N = 2− 8) clusters, but without the obvious preferred atom
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number seen in gold clusters.

As particles decrease in size below approximately 2 nanometers the continuum of

states seen in nanoparticles gives way to the discrete electronic transitions observed

in nanoclusters. The broad absorption spectrum seen in nanoparticles yields to well-

defined excitation and emission spectra which vary inversely with cluster size. For

size-characterized gold clusters this dependence is well-defined, following Ef/N
1/3,

where Ef is the Fermi energy of the material, for small AuN (N = 3-13) clusters and

Ef/N
2/3 for large (N = 23-38) clusters. The fluorescence quantum yield also scales

inversely with cluster size, ranging from 0.7 for Au5 down to 0.1 for Au31, finally

giving way to the very small quantum yield for nanoparticles and bulk metal [207].

The largest amount of synthetic interest has been devoted to glutathione-protected

zero-valent gold (AunSGm, SG = glutathione = γ-L-Glutamyl-L-cysteinylglycine)

clusters. Following the original work by the Whetten group, many others have used

similar techniques to isolate clusters of various sizes, including Au10SG10, Au15SG13,

Au18SG14, Au22SG16, Au22SG17, Au25SG18, Au29SG20, Au33SG22, and Au39SG24 [139,

140, 141, 142, 143]. Clusters of similar sizes can also be made by etching from larger

clusters and nanoparticles [132, 133, 134, 135, 136, 137, 138]. In both cases, the near-

IR emitting Au25SG18 was found to be particularly stable. Smaller, water-soluble

gold clusters were templated in G4-OH and G2-OH PAMAM (fourth- and second-

generation poly(amidoamine) dendrimers) [31, 214]

In a particularly impressive work, the crystal structure of a thiol-protected Au25

cluster, [N(C8H17)4][Au25(SCH2CH2Ph)18] was reported [145]. In this cluster a core

gold atom is surrounded by 12 more gold atoms forming an icosahedron. This Au13

core is protected by a shell of six units of the [-SR-Au-SR-Au-SR-] cyclic polymeric

structure (-SR- = SCH2CH2Ph) with the gold atoms stellated on the faces of the core

icosahedron.
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The synthesis and characterization of emissive silver clusters has proven more diffi-

cult than the corresponding work with gold. Initial success with dendrimer-protected

materials allowed small Agn (n = 2-8) clusters that were soluble in aqueous solvents

to be synthesized in G4-OH and G2-OH PAMAM. Cluster formation from Ag+ was

initiated with the addition of blue (450-480 nm) light on a microscope slide [154].

Other groups have accomplished similar work with polyacrylate scaffolds and elec-

trons freed by γ-radiation as a reducing agent [152] or UV-radiation upon Ag ions in

microgel particles [211].

Future work characterizing and utilizing Ag clusters as novel fluorophores requires

a larger amount of sample be prepared than is afforded by these methods. The use

of single-stranded DNA as a scaffold for Ag clusters has proven to be effective in

producing samples useful for single-molecule biological labels [149, 219, 160, 158].

The specific strand used for templating the DNA controls the nature of the resulting

clusters, and therefore the resulting photophysical properties, with high specificity

[156, 162]. Unique photophysical properties of these clusters make them particularly

suitable as single-molecule labels and are the focus of large amounts of continuing

research [155, 164, 165, 159].

An ultimate goal of much of this work is to develop improved fluorophores for

single-molecule imaging in live cells. In order to improve the required biocompatabil-

ity, using peptides as nanocluster scaffolds are an obvious choice. Peptide-templated

clusters have been reported by several groups. Strong single-molecule Raman scat-

tering from peptide-templated Ag nanoclusters has been observed, but only on small

amounts of photoactivated sample [153]. Extending this to a bulk sample was accom-

plished by Yu and Dickson [217], where the researchers were able to take inspiration

from a long-established technique using AgNO3 as a stain for the nucleolus in fixed

cells. They noticed that fluorescence characteristic of silver clusters could be observed

in stained cells and were able to use picosecond time-gated imaging to increase the
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S/N from sliver clusters over the cell’s natural autofluorescence. In addition short

peptides were designed, incorporating similar ratios of residues as appear in the nu-

cleolus, allowing bulk fluorescence from silver clusters to be observed with a peptide

scaffold. In both of these cases external reducing agents were used to form metallic

silver clusters from aqueous ions.

More recently luminescent Au25 clusters templated in bovine serum albumin (BSA)

were reported [220]. The reduction of Au(III) is accomplished by combining the gold

salt and BSA in aqueous solution, then increasing the pH to approximately 12. This

reduction at high pH is similar to that used to form large silver nanoparticles from

Ag+ and tyrosine in alkaline solution [221]. At high pH the phenol residue of tyrosine

will ionize and subsequently oxidize to a quinone in the presence of a metal ion. It is

consistent that the tyrosine residues in BSA would perform as the reducing agent for

cluster synthesis at high pH. Further work has identified tyrosine as the most active

residue in proteins that template other silver nanomaterials [222].

While many synthesis procedures exist for the creation of noble metal emitters,

there still is a large amount of room for improvement. The use of tyrosine as a

chemically-switchable reducing agent has been reported; here we report the ability for

tyrosine to form emissive silver clusters with the addition of light or heat. In addition,

a novel synthesis for an emissive glutathione-protected gold species is reported

5.2 Synthesis

5.2.1 Tyrosine-reduced Silver Clusters

Emissive clusters can be formed in a straightforward manner by simply combining

AgNO3 and tyrosine in aqueous solution at 1 mM and illuminating with near UV

to green light on a microscope coverslip. Illumination was provided in a widefield

manner with a bandpass-filtered mercury lamp with a maximum intensity of approx-

imately 300 W/cm2. To prevent aggregation, Histidine nonamer (His9) at the same
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concentration was co-dissolved with the silver and tyrosine and photoactivated as

above.

Tyrosine-containing peptides were synthesized (Emory University School of Medicine)

of several sequences appearing in table 2. Emissive silver particles were created with

these peptides in a similar manner as previously mentioned - equal equivalents of

Ag+ and peptide (on a per-tyrosine basis) illuminated on a microscope coverslip. To

extend this method to a bulk synthesis, silver ions and peptide (10 mM Ag+:20 mM

Tyrosine) were co-dissolved in deionized water or propionate buffer (50 mM, pH =

4.5) and placed in a quartz cuvette. This solution was placed in front of a bare mer-

cury lamp for several minutes to one hour. The resulting particle solution was used

for further analysis.

Fluorophores were synthesized using substituted tyrosines under rapid heating in

a microwave reactor. Equal molar amounts of N -acetyl tyrosine and silver nitrate

were dissolved in a minimum of methanol before drying off the solvent in a mi-

crowave reactor tube. The residue was heated to 72 ◦C in 5 minutes with a 1 minute

hold time. The resulting orange crude product was purified with preparatory TLC

(90:9:1 CH2Cl2:MeOH:Sat.NH4OH). Final red-emitting product was used for future

analysis (≪ 1% yield). A similar procedure was repeated for N -acetyl tyrosine ethyl

ester with 50:1 to 80:5 CH2Cl2:MeOH for purification of the crude product via col-

umn chromatography and the desired product yielding green fluorescence under UV

excitation.

5.2.2 Glutathione-protected Gold Fluorphores

Water-soluble Au:glutathione fluorophores were created by first co-dissolving a 2:1

ratio of reduced glutathione and HAuCl4 (final concentrations of 2.5 mM and 1.25

mM, respectively, in 50 mL of solution) into an acetate buffer solution (50 mM, pH

= 4.7) and stirred in the dark overnight. During this time the yellow solution turns
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colorless and subsequently 100 µL of 35% H2O2 is added. After several days more

of stirring the solution turns yellow once again and is now emits orange under UV

excitation. The addition of ethanol will produce a white precipitate that is brightly

fluorescent orange under UV excitation. A similar white emissive solid is produced by

removing the solvent in the initial reaction mixture. The appearance of a precipitate

is common under slightly different synthetic conditions as well and is typically not

redissolvable in solution.

5.3 Photophysical Properties

5.3.1 Tyrosine-reduced Silver Clusters

Under constant illumination with UV through green light, the combination of silver

ions and tyrosine on a microscope coverslip first yields emissive clusters (see figure

5.1). Continued illumination causes the growth of these clusters into aggregates and

then nonemissive nanoparticles. Single-particle Raman is easily observable for parti-

cles of this species as one diffuses in and out of a focal spot (figure 5.2).

To prevent the eventual aggregation of the emissive nanoparticles into larger none-

missive structures a stabilizing peptide could be introduced to the solution. The

addition of His9 allows for similar formation of emissive particles as above with de-

layed aggregation into nonemissive species under continued illumination. The general

photophyical properties were unchanged and the single-particle Raman activity is re-

tained. As can be seen in figure 5.3, the characteristics of the Raman spectrum change

from particle to particle and even with time on the same particle.

To simplify the synthesis of these protected particles, the tyrosine and protecting

peptide were combined into a single peptide. These synthetic peptides were more

sucessful in the formation of emissive particles in the bulk. The resulting solutions

contained were yellow to brown and turbid, indicating the presence of large particles

in solution. These particles could be spun out of solution with gentle centrifigation.
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Table 2: Tyrosine-containing peptides for templating the formation of emissive
nanoparticles.

Tyrosine-containing peptides
Name Sequence Mass No. Tyr
Y3Pep3 HDCNKYDYKHDCNKYDYKHDCN 2706.94 4
DHRY3 DHRYDHRYDHRYDHR 2141.21 3
DHY4 DDHHYDHHYDHHYDHHYDD 2573.47 4

Y42XHRP AHHYAHHYAADYAAHYAAHAAD 2500.59 4
PPPY42XHRE PPPAHHYAHHYAADYAHHYAHHPPP 2892.13 4
TTTY42XHRE TTTAHHYAHHYAADYAHHYAHHTTT 2916.06 4
PTY42XHRE PTPTAHHYAHHYAADYAHHYAHHTPTP 3102.32 4
PTY4HRE PTPTYAHHYAHHYAADYTPTP 2411.60 4

SGSY42XHRE SGSAHHYAHHYAADYAHHYAHH 2540.64 4
SGSY4HRE SGSYAHHYAHHYAADYSGS 2081.12 4

Figure 5.1: Single image of tyrosine-reduced silver fluorescence. Excitation and
photoactivation was provided by a green band-passed mercury lamp. The structure
observed is an undissolved tyrosine crystal.
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(a)

(b)

Figure 5.2: 2(a) A series of Raman spectra of photoactivated tyrosine-silver
nanoparticles diffusing through a laser (514.5 nm ) focal spot. Spectra were acquired
with 100 ms exposure time; 2(b) Single spectrum from 2(a) trace.
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(a) (b)

Figure 5.3: 3(a) Image of emission from His9-protected silver-tyrosine particles; 3(b)
Raman spectra from different particles of same species.

140



The emissive particles were mostly contained in the centrifuged pellet and very few

in the supernatant.

The most productive of the tested peptides was PTY4HRE. Peptide-Ag particles

characterized by FCS and DLS indicated an average hydration radius of 10 to 12 nm,

but at concentrations of nanomolar or less. Even with these very low concentrations,

the particles are sufficiently bright to be easily detectable on the single-particle level.

Diffusing particles yielding 1.4 million photons per second were regularly detected in

FCS experiments.

Fluorophores synthesized with N -acetyl tyrosine showed orange emission with

blue excitation when crude. Several fluorescence species could be extracted from this

crude product, but the brightest showed sharp emission at 602 nm with excitation

of 560 nm (figure 4(a)). A dual-component lifetime of 1.99 ns and 0.73 ns with a

fluorescence quantum yield of 2.8% (figure 4(b)). Insufficient product was isolated

to continue characterization, but none of the emissive species made in this process

would pelletize even when centrifuged at 100,000 x g for one hour.

A similar method with the ethyl ester of N -acetyl tyrosine was performed to pro-

duce a more organic-soluble mixture of fluorophores. Purification via column chro-

matography was able to separate several different emitters, including the brightest

which showed broad green emission (peak = 488 nm) with near-UV (430 nm) excita-

tion. The lifetime with 375 nm excitation was measured as 2.4 ns with an estimated

quantum yield of 25% in isopropanol. These quantities are typical of organic fluo-

rophores. This result combined with wet tests cast doubt on the inclusion of silver

in the emitter for this and the red-emitting species. Attempts at mass spectroscopy

to confirm the presence of silver were inconclusive. While control experiments that

omitted the Ag+ in the synthesis procedure failed to produce similar emissive species,

it is quite possible that the silver is simply required for the resulting reaction rather
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(a) (b)

Figure 5.4: 4(a) Excitation (red) and emission (black) spectra of purified N -acetyl
tyrosine:Ag fluorophore; 4(b) Lifetime measurement of same species (blue, instrument
response red).

than included in the emissive species. While these fluorophores are novel their unre-

markable photophysics combined with the difficult and inefficient preparation make

them less than ideal for future investigation as single-molecule fluorophores.

5.3.2 Glutathione-protected Gold Fluorophores

The weakly fluorescent gold-glutathione complex showed a maximum emission at ap-

proximately 605 nm with peak excitation at 405 nm. This excitation corresponds

closely, but not exactly to a shoulder that grows in the absorbance spectrum cen-

tered around 375 nm. The emission for this species is largely on the hundreds of

nanoseconds timescale, although with some shorter-time contributions. This long-

lived excited state, combined with the low (approximately 2%) quantum yield limits

the emission rate of this fluorophore.

Addition of a reducing agent, such as sodium borohydride (NaBH4) to an emis-

sive gold-glutathione solution immediately results in a nonemissive black precipitate.

The optimum ratio of Au(III) and glutathione starting material was found to be 2

equivalents of glutathione for every gold ion, resulting in the net oxidation state of

the gold ions being Au(I). The photophysical properties are too consistent with other
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(a) (b)

Figure 5.5: 5(a) Excitation (red) and emission (black) spectra of purified N -acetyl
tyrosine ethyl ester:Ag fluorophore; 5(b) Lifetime measurement of same species (black,
instrument response red).

Au(I) complexes reported in the literature to ignore, implying that the true nature

of the fluorophore is a Au(I) complex [223].

Previous work by members of this group have reported the synthesis of these

same glutathione-protected gold fluorophores [224]. Attempts to reproduce this work

were met with difficulty as the reaction readily forms a precipitate under neutral pH

conditions called for. Repeated washings following centrifugation (up to 20 times) to

generate a soluble fluorophore proved fruitless. In fact most attempts at redissolution

of the white fluorescent solid that readily forms in these reactions were unsuccessful

without destruction of the fluorescence. The times that redissolution of the solid was

possible it was not possible to reproduce the success. Also reported in the previous

work by others in this group was the ability to tune the emission color by way of

altering the Au:Glutathione ratio in the synthesis. This was not observed. However,

a correlation between the peak emission wavelength and the ratio of oxidized and

reduced glutathione used in the synthesis procedure published here was observed.

Later communications have indicated that the use of a 1:1 ratio of Au:Glutathione
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(a) (b)

(c)

Figure 5.6: 6(a) Excitation (red) and emission (black) spectra of Au-glutathione
fluorophore solution; 6(b) Absorbance spectrum of same solution. Arrow indicates
shoulder in absorbance spectrum that grows in with emission intensity; 6(c) Lifetime
measurement of same species (data black, fit red). Fit is with three exponentials of
time (percent contribution) of 290 ns (87%), 18 ns (10%), and 0.6 ns (3%).
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in the reaction mixture instead of the 1:2 ratio indicated previously is more success-

ful at preventing the formation of precipitates and subsequently increased fluorescent

yield. Emissive solutions synthesized in this manner - 50 µM solution of each HAuCl4

and reduced glutathione stirred for several days in the light - show similar but not

identical photophysical characteristics as the solutions prepared through the method

above employing hydrogen peroxide. The most striking differences are a significantly

increased contribution of the long lifetime component in the peroxide-utilizing emit-

ters as well as an increased quantum yield in these solutions (0.06 as opposed to 0.001

for the alternate synthesis).

Overall, while the synthesis procedure for Au:Glutathione emitters is straight-

forward, the results are highly variable from reaction to reaction (contrast results in

figures 5.6, 5.7, and 5.8). Continuing work to decode the true nature of these emitters

and optimization of the synthesis procedure remains to be done.

5.4 Conclusions

This work has presented several novel flourophores dependent on noble metals for their

emissive properties. The brightest of these, the peptide-supported silver nanoparti-

cles, shows the most potential promise as a single-particle probe. The heavy atoms

present in these and the other fluorophores reported in this work allow for their use

as multimodal labels, with applications in X-ray fluorescence, CT, or electron mi-

croscopy as well as fluorescence. While the large size of this emitter makes it less

than ideal for future single-molecule applications, such as protein tracking in live

cells, the extremely bright emission and intense Raman signal hold promise for this

species in situations where very small size is not of major importance.

Fluorophores created through the solid-state reaction of silver with tyrosine deriva-

tives are as of yet unresolved with respect to their true chemical nature. While the

emission is not bright enough to warrant further inquiry for the application of these
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(a) (b)

Figure 5.7: 7(a) Emission spectrum under 410 nm excitation of Au:Glutathione
prepared in the absence of hydrogen peroxide by the method recently reported by Jie
Zheng. The green lines indcate a 2-component Gaussian fit with (center (nm)/width
(nm)/amplitude (counts)) of left - (572/82/2.0 x 106) and right - (647/151/3.5 x 106).;
7(b) Emission spectrum under 400 nm excitation of Au:Glutathione prepared in the
presence of hydrogen peroxide by the method reported here. The green lines indcate
a 2-component Gaussian fit with (center (nm)/width (nm)/amplitude (counts)) of
left - (604/78/6.5 x 105) and right - (664/118/2.1 x 106).
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(a) (b)

Figure 5.8: 8(a) Lifetime measurements under 375 nm excitation of Au:Glutathione
prepared in the absence of hydrogen peroxide by the method recently reported by
Jie Zheng. The deconvoluted data (green) was fit to a 4-component fit with lifetimes
(weights) of 11.27 ns (0.74), 68.64 ns (0.20), 302.9 ns (0.049) and 1236.1 ns (0.011);
8(b) Lifetime measurements under 375 nm excitation of Au:Glutathione prepared in
the presence of hydrogen peroxide as reported in this work. The deconvoluted data
(green) was fit to a 3-component fit with lifetimes (weights) of 23.8 ns (0.49), 189 ns
(0.31), and 1204.4 ns (0.20)
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species as single-molecule probes, the uncommon method of their preparation does

make them interesting from a chemical standpoint.

The brightness of gold-glutathione emitters are largely limited by their long life-

times and low quantum yields. However, the combination of fluorescence and heavy

atoms make these species as possible dual-purpose labels for both fluorescence and

x-ray imaging or electron microscopy due to the inclusion of the massive gold atoms

in the fluorophore.
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CHAPTER VI

CONCLUSIONS AND OUTLOOK

This thesis presents a novel method for utilizing fluorescence fluctuations in a widefield

geometry for the purposes of flow vector mapping fully in three dimensions. As well,

extensions of this technique for widefield signal extraction of fluorescently modulat-

able fluorophores and single-point super-resolution microscopy through higher-order

statistical analysis have been discussed. The common theme of this work is utiliz-

ing the information contained in time series data at unique spatial positions to yield

properties regarding a range of experimental systems. These techniques have been

demostrated on model systems but are easily adaptable for use in device processing

or biophysical applications.

6.1 Widefield Cross-correlation Spectroscopy for Flow Imag-
ing

6.1.1 Major findings

Novel methods for determining flow vectors through pixel-pair cross-correlation anal-

ysis have been presented. With the use of a Nipkow Disk Confocal Scanner, flow

vectors in both planar and axial directions were determined. This method demon-

strated a large tolerance for noise in the input signal, indicating a capacity for small,

dim, and fast-moving particles to be used as fluorescent tracers. A S/N value as low

as 1.4 for simulated flow will yield an excellent flow map with sufficent number of

frames. Flow speeds in excess of 10 mm/sec can be measured with this method un-

der appropriate experimental conditions. Particles as small as single antibodies with

hydration radii of 15 nm have been shown to be effective tracer particles.
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6.1.2 Outlook

Due to the generality of this flow-mapping method, a very broad range of systems

can be analyzed with the method presented here. The only contstraint on the input

for the analysis is that it be video data with particle motion producing a fluctuation

in the time series. While flow in microfluidic channels was used as a model system for

the work presented, motion in biological systems such as vesicle tracking in neurons,

blood flow, or diffusion in membranes can be analyzed with trivial modifications to

the analysis algorithm. The incorporation of an analysis functionality for axial motion

allows for the quantification of motion out of the focal plane which becomes vital in

complex three-dimensional systems. Because of these advantages the cross-correlation

time series analysis method presented here represents a valuable alternative to popular

particle tracking techniques for quantifying microscopic motion.

6.2 Advanced Widefield Confocal Microscopy - Signal Ex-
traction and Super-resolution Imaging

6.2.1 Major findings

The nature of widefield confocal microscopy lends itself to utilization in sophisticated

ways in addition to flow mapping. With the incorporation of optically modulatable

fluorophores, a novel incorporation with polystyrene beads presented here, the species

of interest can be extracted over a high scattering and non-modulatable fluorescent

background signal. The subsequent demodulation of a modulated image stack can

selectively yield an enhanced signal over an obscuring, constant fluorescent back-

ground. In addition, a method for selectively enhancing a modulated fluorescence

signal in TC-SPC data has been presented which can allow for selective study of

fluorophores of interest with high temporal resolution.

With the use of higher-order statistical analysis on asynchronous time data it has

been demonstrated that super-resolution images can be extracted from data collected
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in a standard confocal microscope. The use of single-photon counting detectors with

high temporal resolution allows the stochastic blinking of single dye molecules to

be used as the fluorescence fluctuations fundamental to this technique. As a result,

emitters with spacing on the order of the width of the point-spread function can be

resolved with sufficiently high cumulant order. These results have been demonstrated

with image simulations as well as experimentally, where the microsecond blinking

dynamics of DNA:Ag nanoclusters has been used in conjunction with higher-order

statistical analysis to generate super-resolution confocal images.

6.2.2 Outlook

As imaging techniques in biological systems continue to become more and more ad-

vanced, the techniques presented here will increase in importance. The large amount

of constant fluorescent background present in biological samples has long plagued

the use of single-molecule techniques in cells. The use of fluorescence modulation to

enhance the signal from a fluorophore of interest can largely overcome this obstacle.

The utilization of super-resolution microscopy in all of its various forms continues to

grow every year. The technique presented here allows for super-resolution images to

be obtained without strict constraints on experimental setup or fluorophore selection

as many of the other methods demand. As such the work here should be readily ex-

tendable to generating super-resolution images in biological samples with only small

modifications to existing techniques.

6.3 Novel Noble Metal Fluorophores

6.3.1 Major findings

This work has presented several novel flourophores dependent on noble metals for their

emissive properties. The brightest of these, the peptide-supported silver nanoparti-

cles, shows the most potential promise as a single-particle probe. These particles
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show very bright emission on the single-particle level with Raman enhancement visi-

ble even in diffusing single particles. The family of fluorophores created in the solid-

state reaction of silver and several tyrosine derivatives are intrigueing from a chemical

standpoint and do offer a range of photophysical properties. The presented scheme

for producing water-soluble gold-glutathione fluorophores is novel and offers an alter-

native to published methods for producing gold-centered fluorescence.

6.3.2 Outlook

While the fluorophores that appear in this work are novel and cover a wide range of

photophysical and chemical variety, none have proven to be a perfect single molecule

dye. The most promising, the peptide-supported silver clusters, can have potential

uses as a Raman tag or genetically-encoded fluorophore for live-cell labelling. How-

ever, the large size of the particles synthesized to this point limits their use as probes

for dynamic processes. Still there exist a large number of applications where extreme

brightness is more essential than small size and these particles would be excellent

candidates for such work. In addition, the gold-glutathione particles hold promise as

dual-purpose probes for fluorescence and x-ray imaging.

6.4 Widefield Cross-correlation Spectroscopy

As microscopy techniques become more advanced, the subsequent techniques in data

analysis must also continue to improve. Here has been presented novel methods for

analyzing image stacks as a collection of spatially-distrubuted time series data in

conjuction with correlations to yield a wide variety of results. These methods can

be easily adapted to operate on a wide range of experimental systems, including live

cells or whole organisms. With the increased used of such advanced image analy-

sis techniques it is hoped that long-held secrets in microscopic phenomena can be

revealed.
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APPENDIX A

DERIVATION OF FLUORESCENCE CORRELATION

SPECTROSCOPY EXPRESSIONS

A.1 General Form of the Correlation Function

For a stationary random process, such as a fluorescence signal, F (t), the process can

be described as zero-mean fluctuations about a constant average value (equation 53).

F (t) = ⟨F ⟩+ δF (t) (53)

where ⟨δF (t)⟩ = 0 (54)

The brackets here indicate an ensemble average. The correlation between the fluo-

rescence signal at some time F (t1) and at another time F (t2) is given as

g(t1, t2) = ⟨F (t1)F (t2)⟩. (55)

Because the signal is about a constant mean, the difference between t1 and t2 is

important, rather than their absolute values. As such, the correlation function can

be written as

g(τ) = ⟨F (t)F (t+ τ)⟩ (56)

which, combined with equation 53, yields

g(τ) = ⟨F ⟩2 + ⟨δF (t+ τ)F (t)⟩. (57)

In a system such as seen in fluorescence correlation spectroscopy the ensemble average

(the average over all molecules) can be replaced by the time average (average over all
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of time). It is convenient to deal with the normalized correlation function, which is

defined in equation 58.

G(τ) =
g(τ)

⟨F ⟩2
− 1 =

⟨δF (t+ τ)F (t)⟩
⟨F ⟩2

(58)

The finite and stochastic lifetime of the fluorophores ensures that the fluores-

cence radiation is incoherent. As a result, fluctuation in the fluorescence signal is

proportional to the product of the fluctuation of fluorophore concentration, δC(t, r),

and the time-independent molecular detection profile, W (r), such that δF (t, r) ∝

δC(t, r) ∗ W (r), and the total fluorescence signal can be written as a sum over all

emitters. Here the vector r indicates a position (x, y, z) in space. The molecular

detection profile is the product of the intensity profile, I(r), and the detection effi-

ciency parameter, κ (W (r) = κ I(r)). This parameter κ combines the quantum yield

and extinction coefficient of the fluorophore as well as the quantum efficiency of the

photodetector and is assumed to be invariant in both space and time. In addition this

value is cancelled out in the normalization indicating that the normalized fluorescence

correlation function is independent of molecular parameters. The concentration fluc-

tuation can be written in a manner analogous to the fluorescence fluctuation equation,

53, such that

C(t, r) = ⟨C⟩+ δC(t, r). (59)

The time-dependent fluorescence signal can be written as

F (t) = κ

∫
I(r) (⟨C⟩+ δC(t, r)) dr (60)

For the cases covered here, it is mathematically and experimentally appropriate to

treat the intensity profiles as three-dimensional Gaussians with lateral dimensions

ρ = (x, y) and axial dimensions z
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I(r) = Io exp

[
ρ2

2ωxy

]
exp

[
z2

2ω2
z

]
(61)

where ωxy and ωz are the dimensions of the Gaussian in the lateral and axial directions,

respectively [34]. The axial vector is colinear with the light propogation vector from

the objective while the planar coordinate plane is perpendicular to the propgation

vector.

The fluorescence fluctuations are in now in terms of concentration fluctuations,

so it is necessary to define the concentration correlation function, Φ(r, r′, τ), which

describes the correlation between the concentration at point r and some other point

r′ separated in time τ .

Φ(r, r′, τ) = ⟨δC(t, r) δC(t+ τ, r′)⟩ (62)

The normalized correlation function (equation 58) in terms of the molecular de-

tection profile and correlation cross-correlation is given as

G(τ) =

∫∫
I(r) I(r′) Φ(r, r′, τ) drdr′

⟨C⟩2
∫
I(r) dr

∫
I(r′) dr′

(63)

.

Equation 63, with knowledge of the expression of the concentration correlation

expression as well as the intensity profile, can be used to generate the normalized

correlation function for any general system giving rise to fluorescence fluctuations.

A.2 The Concentration Correlation Expression

From the general form of the concentration correlation expression (equation 62) there

exist many solutions depending on the experimental parameters giving rise to the

concentration fluctuations. For the case of isotropic diffusion, the concentration fluc-

tuations satisfy the diffusion equation
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∂

∂t
δC(t, r) = D∇2δC(t, r) (64)

whereD is the diffusion constant and∇2 the Laplace operator [191, 57]. A solution

of this partial differential equation can be expressed as

δC(t, r) =

∫
δC(0, r′)G (t, r|0, r′) dr′ (65)

where G (t, r|0, r′) is the Green’s function of equation 64. The Green’s function of

the diffusion equation yields the form for the concentration correlation equation seen

in equation 66

⟨δC(t, r) δC(t+ τ, r′)⟩ =
∫

⟨δC(0, r) δC(0, r′)⟩ G (t, r|0, r′) dr. (66)

For randomly distributed fluorophores, as is seen in experiments here, the concen-

trations of the particles at two different locations at the same time are uncorrelated,

such that equation 67 holds. As well, since the concentration of fluorophores is low,

the motion of one particle does not affect the others and the number of particles in a

volume is Poissonian, such that equation 68 also holds.

δC(0, r) δC(0, r′)⟩ =⟩δC2⟩ δ(r− r′) (67)

⟨δC2⟩ = ⟨C⟩ (68)

The combination of the previous three equations yields equation 69

⟨δC(t, r) δC(t+ τ, r′)⟩ = ⟨C⟩ G (t, r|0, r′) (69)

As such the correlation function 63 can be expressed in terms of the Green’s

function (equation 70).
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G(τ) =

∫∫
I(r) I(r′)G (t, r|0, r′) drdr′

⟨C⟩
∫
I(r) dr

∫
I(r′) dr′

(70)

The exact form of the Green’s function with vary depending on the experimental

situation and three cases for the diffusion autocorrelation, fluorophore blinking, and

flow cross-correlation function appear separately below.

A.3 Derivation of Diffusion Autocorrelation Function

A solution to the Green’s equation for homogeneous, uniform diffusion in three di-

mensions through a small focal volume in a space with infinitely distant boundries

appears in equation 71 [57].

G (τ, r|0, r′) = (4πDτ)2 exp

[
− |R⃗|2

4Dτ

]
(71)

Here |R⃗| signifies the length of the vector R⃗ that connects the two focal volumes

at positions r and r′ [225]. It can be seen that the solution does not depend on the

absolute coordinates but rather only the distance between the two focal volumes. In

the case of a single-point FCS experiment r = r′, and as such the exponential is

reduced to 1. Evaluation of the integrals in equation 70 with the remaining portion

of the solution for the Green’s function in equation 71 yields the form of the diffusion

autocorrelation (equation 72).

Gac(τ) =
1

N

1

1 + τ
τD

(
1 +

τ

ω2
o τD

)− 1
2

(72)

Here τD is the diffusion timescale, defined as ωxy/4D, where D is the diffusion

constant, and ωo = ωxy/ωz, or the aspect ratio of the ellipsoidal focal volume, and N

is the average number of emissive particles per focal volume over the measurement

period. The implementation of this equation appears chapter 2.6.
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A.4 Derivation of the Blinking Autocorrelation Function

Fluorophore blinking can be thought of as an extension of a two-state first-order

unimolecular chemical reaction between Aon and Aoff as shown in equation 73.

Aon

kon�
koff

Aoff (73)

Here the rate coefficient to go from the on to the off state is given a kon and the

reverse as koff . It is assumed that only the on state of the molecule is emissive. This

reaction typically occurs on a much faster timescale than does molecular diffusion

such that it is possible, with a sufficiently fast detector, to observe both processes in

an autocorrelation function. Here the concern is only the blinking timescales of the

transition in immobilized molecules in a single illumination point. As such a system of

differential equations for the concentrations of the on and off molecules, respectively,

are given in equations 74 and 75.

∂

∂t
Con(t, r) = konCoff (t, r)− koffCon(t, r) (74)

∂

∂t
Coff (t, r) = koffCon(t, r)− konCoff (t, r) (75)

This expression, through a method analogous to the one above for the diffusion

autocorrelation, gives rise to the blinking autocorrelation in equation 76 [58, 225].

G(τ) =
1

N

foff
1− foff

exp

(
− τ

τBlink

)
+ 1 (76)

where foff is the fraction of the N molecules in the focal volume that are in the

dark state and τBlink the timescale for the blinking process. The rate coefficients kon

and koff can be deduced from the autocorrelation by equations 77 and 78.
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foff =
koff

koff + kon
(77)

τBlink =
1

koff + kon
(78)

Implementation of these equations for SOFI imaging occurs on surfaces where

molecular overlap is possible. The rate coefficients are of little concern - rather the

magnitude and timescale of the autocorrelation function are necessary for analysis.

As such, the coefficient for the exponential is collected in a single constant when

utilized in chapter 4.3.

A.5 Derivation of 3-D Flow Cross-correlation Function

For flow an additional term is added to the diffusion function, giving rise to the

form of the concentration correlation function seen in equation 7 of reference [21] and

equation 79 here.

∂

∂t
δC(t, r) = D∇2δC(t, r)− V⃗∇δC(t, r) (79)

The symbol ∇ signifies the Nabla operator and ∇2 the Laplace operator. The

vector V⃗ is the flow vector representing the displacement due to flow over the mea-

surement space. Because the cross-correlation in utilized here the flow is assumed to

be of constant velocity over the space encompassing the two focal volumes. The two

focal volumes are connected by vector R⃗ with amplitude R and angle α relative to the

flow vector. The three-dimensional case of diffusion and flow appears immediately

below and the strictly in-plane case following.

The cross-correlation function for a system undergoing diffusion and flow in three

dimensions is given by Brinkmeier et. al. (equation 8 therein) [21].
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Gcc(τ) =

[
N

(
1 +

τ

τD

)√
1 +

ω2
xy τ

z2o τD

]−1

exp

− 1

ω2
xy

(
V⃗ρ τ − R⃗ρ

)2
1 + τ

τD

− 1

z2o

(
V⃗z τ − R⃗z

)2
1 +

(
ω2
xy τ

z2o τD

)


(80)

Separating this function into planar and axial components requires the following

definitions:

ρ = planar quantity (81a)

z = axial quantity (81b)

γ = arbitrary quantity (81c)

θ = planar flow angle between R⃗x and R⃗y (81d)

ϕ = axial flow angle between R⃗z and R⃗ρ (81e)

τF,γ =
|R⃗γ|
|V⃗γ|

(81f)

The separated form of equation 80 becomes:

Gcc(τ) =

[
N

(
1 +

τ

τD

)√
1 +

ω2
xy τ

z2o τD

]−1

exp

− 1

ω2
xy

(
V⃗ρ τ − R⃗ρ

)2
1 + τ

τD

 exp

− 1

z2o

(
V⃗z τ − R⃗z

)2
1 +

(
ω2
xy τ

z2o τD

)


(82)

This function serves as the basis of the later cross-correlation and autocorrelation

functions.

Now in the limit of zero diffusion (τD → ∞) and in terms of τF,γ , R⃗γ, θ, and ϕ

Gcc(τ) =
1

N
exp

[
−|R⃗ρ|

ω2
xy

(
τ 2

τ 2F,ρ
+ 1− 2

τ

τF,ρ
cos θ

)]
exp

[
−|R⃗z|

z2o

(
τ 2

τ 2F,z
+ 1− 2

τ

τF,z
cos ϕ

)]
(83)

The derivative of equation 83 with respect to τ yields equation 85
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Gcc(τ) =
1

N
exp

[
−|R⃗ρ|

ω2
xy

(
τ 2

τ 2F,ρ
+ 1 + 2 τ τF,ρ cos θ

)]
∗ (84)

exp

[
−|R⃗z|

z2o

(
τ 2

τ 2F,z
+ 1 + 2 τ τF,z cos ϕ

)]

∗

[
−|R⃗ρ|

ω2
xy

(
2 τ

τ 2F,ρ
− 2 cos θ

τF,ρ

)]
∗

[
−|R⃗z|

z2o

(
2 τ

τ 2F,z
− 2 cos ϕ

τF,z

)]
The exponental portion of equation 85 cannot be equal to zero, so only the remaining

portion will yield a solution when solving for the peak position.

0 =

[
−|R⃗ρ|

ω2
xy

(
2 τ

τ 2F,ρ
− 2 cos θ

τF,ρ

)]
∗

[
−|R⃗z|

z2o

(
2 τ

τ 2F,z
− 2 cos ϕ

τF,z

)]
(85)

which has solutions at

τ = τF,ρ cos θ (86)

τ = τF,z cos ϕ (87)

Substituting the solutions into appropriate variables yields the final form of the

amplitude dependence of the three-dimensional cross-correlation. Here, |R⃗ρ| and |R⃗z|

are replaced with the later-used Rplanar and Raxial. The contribution to N has been

split into axial (Nxy) and planar (Nz) portions. For consistiency with later nomen-

clature zo = ωz.

G(tMax) =
1

Nxy

exp

[
−
R2

planar

ωxy

sin2 θ

]
∗ 1

Nz

exp

[
−R2

axial

ωz

sin2 ϕ

]
(88)

A.6 Dependence of Cross-correlation Peak Position on An-
gle

For the in-plane flow case, where τFlow ≪ τD and axial flow is insignificant, the cross-

correlation between two points separated by distance R = |R⃗| and angle α between

the flow vector and spacing vector is equation 89, derived from equation 80.
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Gcc(τ) =
1

N
exp

[
−R2

ωo
2

(
τ 2

τFlow
2
+ 1− 2

τ

τFlow

)
cos α

]
(89)

and taking the derivative with respect to time τ in order to find the position of

the peak maximum

dGcc(τ)

d τ
=

1

N

[
−R2

ω2
o

(
2 τ

τ 2Flow

− 2 cos α

τFlow

)]
∗ exp

[
− R2

ω0
2

(
τ 2

τFlow
2
+ 1− 2

τ

τFlow

)
cos α

]
(90)

The preexponential portion can be set to zero

0 =

[
−R2

ω2
o

(
2 τ

τ 2Flow

− 2 cos α

τFlow

)]
(91)

and solving for τ yields

2 cos α

τFlow

=
2 τ

τ 2Flow

(92a)

τ = τFlow cos α (92b)

This indicates that the position of the peak at time τ has a maximum value τFlow

and a cosine dependence on the angle between the spacing vector and the flow vector.

A.7 Dependence of Cross-correlation Peak Amplitude on
Angle

Again beginning with the simplified flow cross-correlation function (equation 19) and

solving for the maximum value of Gcc (at τ = τFlow cos α)

Gcc(τ) =
1

N
exp

[
−R2

ωo
2

(
τFlow cos α

τFlow
2

+ 1− 2
τFlow cos α

τFlow

)
cos α

]
(93)

which reduces to

Gcc(τ) =
1

N
exp

[
−R2

ωo
2

(
cos2 α+ 1− 2 cos2 α

)]
(94)
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Through the identity sin2 x + cos2 x = 1, this yields the final form of the cross-

correlation amplitude function.

Gcc(τ) =
1

N
exp

[
−R2

ωo
2

(
sin2 α

)]
(95)

The extension of this to three dimensions has been previous given in equation 95.
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