13 research outputs found

    Glycosylation Failure Extends to Glycoproteins in Gestational Diabetes Mellitus: Evidence From Reduced α2-6 Sialylation and Impaired Immunomodulatory Activities of Pregnancy-Related Glycodelin-A

    Get PDF
    OBJECTIVE - Gestational diabetes mellitus (GDM) is a common metabolic disorder of pregnancy. Patients with GDM are at risk for high fetal mortality and gestational complications associated with reduced immune tolerance and abnormal carbohydrate metabolism. Glycodelin-A (GdA) is an abundant decidual glycoprotein with glycosylation-dependent immunomodulatory activities. We hypothesized that aberrant carbohydrate metabolism in GDM was associated with changes in glycosylation of GdA, leading to defective immunomodulatory activities. RESEARCH DESIGN AND METHODS - GdA in the amniotic fluid from women with normal (NGdA) and GDM (DGdA) pregnancies was purified by affinity chromatography. Structural analysis of protein glycosylation was preformed by lectin-binding assay and mass spectrometry. Cytotoxicity, cell death, cytokine secretion, and GdA binding of the GdA-treated lymphocytes and natural killer (NK) cells were determined. The sialidase activity in the placental tissue from normal and GDM patients was measured. RESULTS - GDM affected the glycosylation but not the protein core of GdA. Specifically, DGdA had a lower abundance of α2-6-sialylated and high-mannose glycans and a higher abundance of glycans with Sda (NeuAcα2-3[GalNAcÎČ1-4]Gal) epitopes compared with NGdA. DGdA had reduced immuosuppressive activities in terms of cytotoxicity on lymphocytes, inhibitory activities on interleukin (IL)-2 secretion by lymphocytes, stimulatory activities on IL-6 secretion by NK cells, and binding to these cells. Desialylation abolished the immunomodulation and binding of NGdA. Placental sialidase activity was increased in GDM patients, which may account for the reduced sialic acid content of DGdA. CONCLUSIONS - Taken together, this study provides the first direct evidence for altered enzymatic glycosylation and impaired bioactivity of GdA in GDM patients. © 2011 by the American Diabetes Association.published_or_final_versio

    Differential actions of glycodelin-A on Th-1 and Th-2 cells: A paracrine mechanism that could produce the Th-2 dominant environment during pregnancy

    Get PDF
    Background: The maternalfetal interface has a unique immunological response towards the implanting placenta. It is generally accepted that a T-helper type-2 (Th-2) cytokine prevailing environment is important in pregnancy. The proportion of Th-2 cells in the peripheral blood and decidua is significantly higher in pregnant women in the first trimester than in non-pregnant women. Glycodelin-A (GdA) is a major endocrine-regulated decidual glycoprotein thought to be related to fetomaternal defence. Yet the relationship between its immunoregulatory activities and the shift towards Th-2 cytokine profile during pregnancy is unclear. Methods GdA was immunoaffinity purified from human amniotic fluid. T-helper, T-helper type-1 (Th-1) and Th-2 cells were isolated from the peripheral blood. The viability of these cells was studied by XTT assay. Immunophenotyping of CD4/CD294, cell death and GdA-binding were determined by flow cytometry. The mRNA expression, surface expression and secretion of Fas/Fas ligand (FasL) were determined by quantitative polymerase chain reaction, flow cytometry and ELISA, respectively. The activities of caspase-3, -8 and -9 were measured. The phosphorylation of extracellular signal-regulated kinases (ERK), p38 and, c-Jun N-terminal kinase was determined by western blotting. Results Although GdA bound to both Th-1 and Th-2 cells, it had differential actions on the two cell-types. GdA induced cell death of the Th-1 cells but not the Th-2 cells. The cell death was mediated through activation of caspase -3, -8 and -9 activities. GdA up-regulated the expression of Fas and inhibited ERK activation in the Th-1 cells, which might enhance the vulnerability of the cells to cell death caused by a trophoblast-derived FasL. Conclusions The data suggest that GdA could be an endometrial factor that contributes to the Th-2/Th-1 shift during pregnancy. © 2011 The Author.postprin

    The relationship between circadian blood pressure variability and maternal/perinatal outcomes in women with preeclampsia with severe features

    No full text
    Objective To determine whether circadian blood pressure (BP) variation of women with preeclampsia (PE) with severe features was associated with adverse maternal/perinatal outcomes. Methods 173 women with PE with severe features were recruitedand categorized into three groups: dipper, non-dipper and reverse dipper type BP group.. Maternal and perinatal outcomes were compared among groups. Results There were significant differences in gestational ages, premature delivery, retinopathy, HELLP syndrome, mean birth weight, rate of low birth weight infants and fetal growth restriction. Conclusion Aberrant circadian pattern of BP in women with PE with severe features was associated with several adverse maternal/perinatal outcomes

    The relationship between circadian blood pressure variability and maternal/perinatal outcomes in women with preeclampsia with severe features

    No full text
    Objective To determine whether circadian blood pressure (BP) variation of women with preeclampsia (PE) with severe features was associated with adverse maternal/perinatal outcomes. Methods 173 women with PE with severe features were recruitedand categorized into three groups: dipper, non-dipper and reverse dipper type BP group.. Maternal and perinatal outcomes were compared among groups. Results There were significant differences in gestational ages, premature delivery, retinopathy, HELLP syndrome, mean birth weight, rate of low birth weight infants and fetal growth restriction. Conclusion Aberrant circadian pattern of BP in women with PE with severe features was associated with several adverse maternal/perinatal outcomes

    Effects of native human zona pellucida glycoproteins 3 and 4 on acrosome reaction and zona pellucida binding of human spermatozoa

    No full text
    Acrosome reaction is crucial to the penetration of spermatozoa through the zona pellucida (ZP). Glycosylation of ZP glycoproteins is important in spermatozoa-ZP interaction. Human ZP glycoprotein-3 (ZP3) is believed to initiate acrosome reaction. Recently, human ZP4 was also implicated in inducing acrosome reaction. These studies were based on recombinant human ZP proteins with glycosylation different from their native counterparts. In the present study, the effects of native human ZP3 and ZP4 on acrosome reaction and spermatozoa-ZP binding were investigated. Native human ZP3 and ZP4 were immunoaffinity-purified. They induced acrosome reaction and inhibited spermatozoa-ZP binding time- and dose-dependently to different extents. These biological activities of human ZP3 and ZP4 depended partly on their glycosylation, with N-linked glycosylation contributing much more significantly than O-linked glycosylation. Studies with inhibitors showed that both human ZP3- and ZP4-induced acrosome reactions were protein kinase-C, protein tyrosine kinase, T-type Ca2+ channels, and extracellular Ca2+ dependent. G-protein also participated in human ZP3- but not in ZP4-induced acrosome reaction. On the other hand, protein kinase-A and L-type Ca 2+ channels took part only in human ZP4-induced acrosome reaction. This manuscript describes for the first time the actions of purified native human ZP3 and ZP4 on acrosome reaction and spermatozoa-ZP binding. © 2008 by the Society for the Study of Reproduction, Inc.link_to_subscribed_fulltex

    Effects of Differential Glycosylation of Glycodelins on Lymphocyte Survival*S⃞

    No full text
    Glycodelin is a human glycoprotein with four reported glycoforms, namely glycodelin-A (GdA), glycodelin-F (GdF), glycodelin-C (GdC), and glycodelin-S (GdS). These glycoforms have the same protein core and appear to differ in their N-glycosylation. The glycosylation of GdA is completely different from that of GdS. GdA inhibits proliferation and induces cell death of T cells. However, the glycosylation and immunomodulating activities of GdF and GdC are not known. This study aimed to use ultra-high sensitivity mass spectrometry to compare the glycomes of GdA, GdC, and GdF and to study the relationship between the immunological activity and glycosylation pattern among glycodelin glycoforms. Using MALDI-TOF strategies, the glycoforms were shown to contain an enormous diversity of bi-, tri-, and tetra-antennary complex-type glycans carrying GalÎČ1–4GlcNAc (lacNAc) and/or GalNAcÎČ1–4GlcNAc (lacdiNAc) antennae backbones with varying levels of fucose and sialic acid substitution. Interestingly, they all carried a family of Sda (NeuAcα2–3(GalNAcÎČ1–4)Gal)-containing glycans, which were not identified in the earlier study because of less sensitive methodologies used. Among the three glycodelins, GdA is the most heavily sialylated. Virtually all the sialic acid on GdC is located on the Sda antennae. With the exception of the Sda epitope, the GdC N-glycome appears to be the asialylated counterpart of the GdA/GdF glycomes. Sialidase activity, which may be responsible for transforming GdA/GdF to GdC, was detected in cumulus cells. Both GdA and GdF inhibited the proliferation, induced cell death, and suppressed interleukin-2 secretion of Jurkat cells and peripheral blood mononuclear cells. In contrast, no immunosuppressive effect was observed for GdS and GdC
    corecore