268 research outputs found
Lower-rim ferrocenyl substituted calixarenes: new electrochemical sensors for anions
New ferrocene substituted calix[4 and 5]arenes have been prepared and the crystal structure of a lower-rim substituted bis ferrocene calix[4]arene (7) has been elucidated. The respective ferrocene/ferrocenium redox-couples of compounds 6 (a calix[4]arene tetra ferrocene amide) and 8 (a calix[5]arene pentaferrocene amide) are shown to be significantly cathodically perturbed in the presence of anions by up to 160 mV in the presence of dihydrogen phosphate
Bridging the gaps between cancer genomics, computational solutions and healthcare delivery
No abstract available
Defining the clinical genomic landscape for real-world precision oncology
Through the delivery of large international projects including ICGC and TCGA, knowledge of cancer genomics is reaching saturation point. Enabling this to improve patient outcomes now requires embedding comprehensive genomic profiling into routine oncology practice. Towards this goal, this study defined the biologically and clinically relevant genomic features of adult cancer through detailed curation and analysis of large genomic datasets, accumulated literature and biomarker-driven therapeutics in clinic and development. The characteristics and prevalence of these features were then interrogated in 2348 whole genome sequences, covering 21 solid tumour types, generated by the PCAWG project. This analysis highlights the predominant contribution of copy number alterations and identifies a critical role for disruptive structural variants in the inactivation of clinically important tumour suppressor genes, including PTEN and RB1, which are not currently captured by diagnostic assays. This study defines a set of essential genomic features for the characterisation of common adult cancers
The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma.
Prostate cancer is the most commonly diagnosed malignancy and second leading cause of cancer death among men in the United States. In recent years, several new agents, including cancer immunotherapies, have been approved or are currently being investigated in late-stage clinical trials for the management of advanced prostate cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel, including physicians, nurses, and patient advocates, to develop consensus recommendations for the clinical application of immunotherapy for prostate cancer patients. To do so, a systematic literature search was performed to identify high-impact papers from 2006 until 2014 and was further supplemented with literature provided by the panel. Results from the consensus panel voting and discussion as well as the literature review were used to rate supporting evidence and generate recommendations for the use of immunotherapy in prostate cancer patients. Sipuleucel-T, an autologous dendritic cell vaccine, is the first and currently only immunotherapeutic agent approved for the clinical management of metastatic castrate resistant prostate cancer (mCRPC). The consensus panel utilized this model to discuss immunotherapy in the treatment of prostate cancer, issues related to patient selection, monitoring of patients during and post treatment, and sequence/combination with other anti-cancer treatments. Potential immunotherapies emerging from late-stage clinical trials are also discussed. As immunotherapy evolves as a therapeutic option for the treatment of prostate cancer, these recommendations will be updated accordingly
Application of the LymphGen classification tool to 928 clinically and genetically-characterised cases of diffuse large B cell lymphoma (DLBCL).
We recently published results of targeted sequencing applied to 928 unselected cases of DLBCL registered in the Haematological Malignancy Research Network (HMRN) registry (1). Clustering allowed us to resolve five genomic subtypes. These subtypes shared considerable overlap with those proposed in two independent genomic studies(2, 3), suggesting the
potential to use genetics to stratify patients by both risk and biology. In the original studies, clustering techniques were applied to sample cohorts to reveal molecular substructure, but left open the challenge of how to classify an individual patient. This was addressed by the LymphGen classification tool (4). LymphGen assigns an individual case to one of six molecular subtypes. The tool accommodates data from exome or targeted sequencing, either with or without copy number variant (CNV) data. Separate gene expression data allows classification
of a seventh, MYC-driven subtype defined by a double hit (DHL) or molecular high-grade (MHG) gene expression signature(5-7).HR was funded by a studentship from the Medical Research Council. DH was supported by a Clinician Scientist Fellowship from the Medical Research Council (MR/M008584/1). The Hodson laboratory receives core funding from Wellcome and MRC to the Wellcome-MRC Cambridge Stem Cell Institute and core funding from the CRUK Cambridge Cancer Centre. HMRN is supported by BCUK 15037 and CRUK 18362
Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice.
Xenograft models are transforming our understanding of the output capabilities of primitive human hematopoietic cells in vivo. However, many variables that affect posttransplantation reconstitution dynamics remain poorly understood. Here, we show that an equivalent level of human chimerism can be regenerated from human CD34(+) cord blood cells transplanted intravenously either with or without additional radiation-inactivated cells into 2- to 6-month-old NOD-Rag1(-/-)-IL2Rγc(-/-) (NRG) mice given a more radioprotective conditioning regimen than is possible in conventionally used, repair-deficient NOD-Prkdc(scid/scid)-IL2Rγc(-/-) (NSG) hosts. Comparison of sublethally irradiated and non-irradiated NRG mice and W(41)/W(41) derivatives showed superior chimerism in the W(41)-deficient recipients, with some differential effects on different lineage outputs. Consistently superior outputs were observed in female recipients regardless of their genotype, age, or pretransplantation conditioning, with greater differences apparent later after transplantation. These results define key parameters for optimizing the sensitivity and minimizing the intraexperimental variability of human hematopoietic xenografts generated in increasingly supportive immunodeficient host mice. Exp Hematol 2017 Apr; 48:41-49
The impact of geomagnetic spikes on the production rates of cosmogenic 14C and 10Be in the Earth's atmosphere
We seek corroborative evidence of the geomagnetic spikes detected in the Near East ca. 980 BC and 890 BC in the records of the past production rates of the cosmogenic nuclides 14C and 10Be. Our forward modeling strategy rests on global, time-dependent, geomagnetic spike field models feeding state-of-the-art models of cosmogenic nuclide production. We find that spike models with an energy budget in line with presently inferred large-scale flow at Earth's core surface fail to produce a visible imprint in the nuclide record. Spike models able to reproduce the intensity changes reported in the Near East require an unaccountably high-magnitude core flow, yet their computed impact on cosmogenic isotope production rates remains ambiguous. No simple and unequivocal agreement is obtained between the observed and modeled nuclide records at the epochs of interest. This indicates that cosmogenic nuclides cannot immediately be used to confirm the occurrence of these two geomagnetic spikes
Recommended from our members
Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report.
Based on the profile of genetic alterations occurring in tumor samples from selected diffuse large B-cell lymphoma (DLBCL) patients, 2 recent whole-exome sequencing studies proposed partially overlapping classification systems. Using clustering techniques applied to targeted sequencing data derived from a large unselected population-based patient cohort with full clinical follow-up (n = 928), we investigated whether molecular subtypes can be robustly identified using methods potentially applicable in routine clinical practice. DNA extracted from DLBCL tumors diagnosed in patients residing in a catchment population of ∼4 million (14 centers) were sequenced with a targeted 293-gene hematological-malignancy panel. Bernoulli mixture-model clustering was applied and the resulting subtypes analyzed in relation to their clinical characteristics and outcomes. Five molecular subtypes were resolved, termed MYD88, BCL2, SOCS1/SGK1, TET2/SGK1, and NOTCH2, along with an unclassified group. The subtypes characterized by genetic alterations of BCL2, NOTCH2, and MYD88 recapitulated recent studies showing good, intermediate, and poor prognosis, respectively. The SOCS1/SGK1 subtype showed biological overlap with primary mediastinal B-cell lymphoma and conferred excellent prognosis. Although not identified as a distinct cluster, NOTCH1 mutation was associated with poor prognosis. The impact of TP53 mutation varied with genomic subtypes, conferring no effect in the NOTCH2 subtype and poor prognosis in the MYD88 subtype. Our findings confirm the existence of molecular subtypes of DLBCL, providing evidence that genomic tests have prognostic significance in non-selected DLBCL patients. The identification of both good and poor risk subtypes in patients treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) clearly show the clinical value of the approach, confirming the need for a consensus classification.Bloodwise (grant number 15037) funded the majority of this study. Genetic sequencing was funded by 14M Genomics, a start-up company that ceased trading February 2016. DJH was funded by a clinician scientist fellowship from the MRC and receives core funding from Wellcome and MRC to the Wellcome-MRC Cambridge Stem Cell Institute. Some of the analysis in this study was performed on the “Viking” high performance computing
cluster at the University of York.1
Genetic determinants of co-accessible chromatin regions in activated T cells across humans.
Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression
- …