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A B S T R A C T   

Through the delivery of large international projects including ICGC and TCGA, knowledge of cancer genomics is 
reaching saturation point. Enabling this to improve patient outcomes now requires embedding comprehensive 
genomic profiling into routine oncology practice. Towards this goal, this study defined the biologically and 
clinically relevant genomic features of adult cancer through detailed curation and analysis of large genomic 
datasets, accumulated literature and biomarker-driven therapeutics in clinic and development. The character
istics and prevalence of these features were then interrogated in 2348 whole genome sequences, covering 21 
solid tumour types, generated by the PCAWG project. This analysis highlights the predominant contribution of 
copy number alterations and identifies a critical role for disruptive structural variants in the inactivation of 
clinically important tumour suppressor genes, including PTEN and RB1, which are not currently captured by 
diagnostic assays. This study defines a set of essential genomic features for the characterisation of common adult 
cancers.   

1. Introduction 

Over the past decade, substantial knowledge has accumulated 
around the genomic aberrations that underpin the development and 
progression of cancer, through the concerted efforts of large worldwide 
collaborations including the International Cancer Genome Consortium 
(ICGC), The Cancer Genome Atlas (TCGA) and, most recently, the Pan- 
Cancer Analysis of Whole Genomes (PCAWG) [2,14,16]. As a conse
quence, the discovery of common/phenotypically strong cancer genes, 
which contribute the majority of driver events, is now close to satura
tion. Indeed, in a recent analysis of 2658 whole genomes, only around 
5% of cases did not have their genomic driver(s) identified [16]. Our 
current level of knowledge, therefore, is sufficient to define the vast 
majority of the clinically and biologically relevant cancer genomic space 
with a high degree of certainty. 

Whilst this lexicon of cancer variants is close to completion, genomic 
profiling has yet to deliver on its potential for improving outcomes for 
cancer patients [17]. Advances to date have largely been based on a 
single gene - single drug paradigm delivered through a limited genomic 

test (a ‘companion diagnostic’), as exemplified by EGFR inhibitor ther
apy for EGFR-mutant lung cancers. While this model achieves dramatic 
responses for some patients, there is growing appreciation that a 
different approach is required to unlock the full potential of precision 
medicine, in order to help a wider range of cancer patients and to pre
vent the often rapid acquisition of resistance to targeted therapies [3]. 

Precision oncology requires an integrated analysis of the full com
plement of genomic events that underpin malignant transformation, 
disease progression and therapeutic response. Achieving this in the real 
world requires an assay that is able to deliver high-quality information 
from available biopsy material, requiring tolerance for small samples, 
formalin-exposed DNA and low tumour cellularity [18,20]. In addition, 
this information needs to be deliverable at scale, at a cost and using 
infrastructure that is achievable within publicly funded healthcare sys
tems. These technical specifications are not yet met by whole genome 
sequencing (WGS) and hence WGS has been commissioned for only 3% 
of cancer cases in England following completion of the 100,000 genomes 
project (www.england.nhs.uk/publication/national-genomic-test-dir 
ectories/). Whole exome sequencing (WES) is often viewed as the 
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second choice when WGS is not possible. However, WES is not a good 
option for cancer profiling; firstly, because the vast majority of genes are 
not cancer genes and therefore most of the sequencing data generated 
from WES has no clinical utility, and secondly, because cancers contain 
driver events out with the coding exome, including alterations in regu
latory regions [11,27] and fusion gene junctions, that may be missed by 
WES assays. Targeted capture sequencing technology is able to deliver 
all classes of genomic variant, and deployment of this approach will 
ensure the majority of cancer patients benefit quickly from the genomic 
knowledge delivered by ICGC, TCGA and PCAWG. 

A current critical bottleneck in the translation of accumulated 
genomic knowledge into improved outcomes for patients is the accurate 
definition of content for targeted cancer assays, such that the maximum 
amount of genomic information is delivered for the maximum number of 
patients. To address this challenge, we performed an objective and 
exhaustive curation of published studies and databases to define the 
genomic features that drive neoplastic transformation, disease course, 
and therapeutic response and resistance. The prevalence in cancers and 
the type of genomic events affecting these features were then charac
terised in detail using 2348 cancer whole genome sequences from the 
PCAWG dataset. These data inform the design of cancer assays able to 
deliver the vast majority of clinically and biologically relevant genomic 
information at low cost from real-world samples. 

2. Results 

2.1. Comparison of existing assays 

A range of sequencing-based cancer diagnostics are currently avail
able from commercial and healthcare providers. These assays commonly 
report information for 400–500 genes. While this is broadly consistent 
with estimates of the total number of genes that play a biological role in 
cancer (i.e. the total number of cancer genes) [15,16,23], analysis of the 
overlap in content between eight high-profile providers reveals poor 
correlation, with less than 15% of genes included in all tests, and over 
half of the genes present in only 1 or 2 assays (Fig. 1). Technical per
formance aside, this finding highlights significant variability in the 
quantity and quality of clinically meaningful genomic data that is 
generated by existing cancer assays. 

2.2. Defining assay content: Gene level alterations 

A list of 2002 candidate cancer genes was generated by combining 
the outputs of large statistical driver gene studies [14–16] with genes 
included in commercial and healthcare assays (Fig. 1 and AACR-GENIE 
v5.0 [1]). The statistical studies are probabilistic in nature and include a 
false discovery rate (FDR) which is generally set at 5–10%. As a conse
quence, aggregating outputs from these models leads to an accumulation 
of false positives (which are different between studies), while inter
secting outputs from multiple studies identifies true positives as those 
that are identified as cancer genes by independent studies. Consistent 
with this, of the 1474 potential cancer genes identified by the 8 studies 

of small variant drivers (Supplementary Table 1), only 2.2% of genes 
were identified by all 8 approaches, and 48.5% of genes were only 
identified by a single study (Supplementary Fig. 1). 

The 2002 genes were scored and filtered based on their occurrence in 
nineteen studies (Supplementary Table 1) using mutation, hotspot, copy 
number and fusion scores (Fig. 2). This approach yielded a set of 447 
high-confidence cancer genes. In order to future-proof this gene set, it 
was augmented with knowledge of biomarkers with potential utility 
from emerging clinical trial data and/or strong pre-clinical rationale for 
a role in cancer. Particular attention was paid to genomic markers of 
response and resistance to treatment, including immunotherapy [12], as 
genomic alterations resulting in therapy resistance may reside outside of 
known cancer genes, and could, therefore, be missed by the curation of 
cancer gene studies. A small number of genes (n = 12) that passed the 
filtering but lacked biological plausibility were excluded, including re
ceptors for low-density lipoprotein and thyroid stimulating hormone. 
Some low prevalence cancer types are under-represented in large sta
tistical cohorts and additional genes for these were included through 
curation of the literature. From the total set of starting genes, 149 genes 
(43 of which passed screening) were found to be altered only in hae
matological malignancy; these genes were segregated for inclusion in a 
separate haemato-oncology assay. The final output of this process yiel
ded 555 genes directly implicated in the genesis or evolution of solid 
adult tumours. 

The 555 solid cancer driver genes identified by this process were 
then assigned to three tiers based on their current utility in clinical 
practice and drug development. The first tier, termed cancer CORE, 
includes genes that have an actual role or immediate potential as clin
ically relevant biomarkers through informing therapy (resistance/ 
response) or prognosis, including emerging biomarkers being tested in 
clinical trials, particularly novel mechanisms of response and resistance 
to immunotherapy, or where strong pre-clinical evidence exists. The 
next tier, cancer PLUS, comprises high confidence cancer genes without 
current clinical utility, along with potential markers of therapeutic 
response/resistance for which mechanisms are yet to be fully charac
terised. The final tier, cancer MAX, comprises probable cancer genes and 
markers of therapeutic response/resistance for which current data are 
more speculative (Fig. 2, Supplementary Table 2). 

2.3. Analysis of existing assays 

The tiered list of solid cancer driver genes was mapped back onto the 
clinical cancer assays analysed in the Fig. 1. This analysis, shown in 
Fig. 3, demonstrated that clinically important CORE genes were 
reasonably (but not entirely) represented across the available assays. 
Notably, many of the assays include a significant proportion of genes for 
which objective evidence for a role in cancer was not found. 

2.4. Prevalence of gene-level variant types 

Currently available cancer diagnostics have mostly been designed for 
the detection of small variants (base substitutions and small insertions/ 

Fig. 1. Comparison of cancer NGS assay gene content from commercial and healthcare providers. Piechart displays the intersect of genes across 8 cancer NGS 
diagnostics (table; total n = 1084 genes), showing that less than 15% of genes are covered by all 8 assays, with over half the genes targeted found on only 1 or 
2 panels. 
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deletions). This strategy biases towards the comprehensive characteri
sation of oncogenes, which are predominantly activated by point mu
tations, at the expense of tumour suppressor genes, which can be 
inactivated by mutation, whole or partial gene or exon deletion, or 
disruptive structural variants (e.g. translocations) within their coding or 
non-coding footprint. Additional genomic events of relevance include 
copy number gains and structural variants resulting in fusion genes. 

To determine the scope and characteristics of biologically relevant 
driver genomic alterations targeting the cancer CORE set of genes, we 
interrogated the PCAWG cohort of high-quality cancer genomes. This 
cohort of 2348 participants, with unique whole genome cancer se
quences representing common solid tumour types, has been analysed by 
the ICGC PCAWG Consortium to generate a consensus set of genomic 
aberrations, encompassing all known variant types [16]. As a pre- 
requisite, oncogene versus tumour suppressor gene (TSG) status was 
assigned for each gene to facilitate classification of driver versus pas
senger events. Assignment of TSG versus oncogene status was based on 
knowledge of both biological function (in normal and malignant states, 
as well as in therapeutic resistance), and patterns of recurrent mutations 
observed in cancer. In addition, a third category is required (termed TO) 

to account for genes that show tumour suppressor or oncogene activity 
in different tissue contexts, and for genes where different functional 
states (gain or loss of function) are implicated in oncogenesis and 
therapeutic response/resistance (for example, JAK family genes where 
activating mutations drive malignant transformation and loss of func
tion mutations impart resistance to immunotherapy) (Supplementary 
Fig. 2). 

Small variants were classed as driver events if they were recurrent in 
a large data set (AACR-GENIE v5.0) or if they resulted in disruption of 
genes classified as TSG or TO (see Methods for full details). Gene-level 
amplification was classified according to consensus criteria for 
genomic analyses (≥5 copies in a diploid cancer or ≥ 9 copies in a 
tetraploid cancer; [22,24]). For a subset of oncogenes, a clear link exists 
between amplification and a role in cancer, including receptor tyrosine 
kinases and cell cycle components such as cyclin family genes (Supple
mentary Table 3). For other oncogenes, assigning driver status to copy 
number gains is not so straightforward, as the biological consequences 
of amplification are unclear, for example intracellular signalling 
pathway intermediaries. For these genes, amplification was only anno
tated as a driver event when amplification was observed in conjunction 

Fig. 2. Cancer gene selection decision tree. Schematic of the process used to identify high-confidence cancer driver genes. The pie chart shows the assessment and 
tiering of 2002 genes present on commercial or LDT-delivered cancer panels. 

Fig. 3. Comparison of cancer NGS assay gene content from commercial and healthcare providers with an objectively defined and clinically tiered set of cancer 
driver genes. 
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with a small variant driver. For gene deletion and disruptive structural 
variants, driver status was only assigned in the presence of biallelic 
genomic aberrations (i.e. homozygous deletion, or heterozygous dele
tion + structural variant and so forth). For fusion events, structural 
variants targeting a subset of oncogenes in the CORE set known to be 
fusion partners were screened for potential gene fusions and other 
activating structural variants; rearrangements were considered as 
drivers if the variant resulted in a known activating event or intersected 
a reported fusion partner of the oncogene. 

Integration of cancer CORE driver events in the PCAWG cohort 
provided an overview of how different variant classes contribute to 
biologically and clinically relevant events across cancer types (Fig. 4). 
This analysis highlighted the critical contribution of structural and copy 
number alterations and verifies previous studies that have identified 
cancers such as colorectal as largely small variant driven, in contrast to 
rearrangement-driven tumours such as ovarian cancer and sarcoma [4]. 

Fig. 4 highlights the important contribution of disruptive structural 
variants to cancer biology. To further investigate this under-appreciated 
class of variant, the contribution of different variant types was examined 
in important tumour suppressor genes (Fig. 5). This demonstrated that 
the contribution of structural variants to TSG inactivation is highly 
variable, with inactivation of a subset of TSGs being frequently due to 
this variant class. Genes commonly inactivated by disruptive structural 
variants include CD58 (55%), NF1 (32%), RB1 (28%) and PTEN (21%). 
The contribution of structural variants to inactivation of each TSG is also 
highly variable between tumour types (Fig. 6). 

Disruptive structural variants are not detected by the majority of 
diagnostics currently in clinical use. Failure to detect such events has the 
potential to adversely impact both clinical decision-making and thera
peutic development. Among the tumour suppressor genes commonly 
targeted by disruptive structural variants, there are a number that are 
important in current therapeutic development. Loss of PTEN function is 
associated with hyperactivation of PI3K signalling which can be targeted 
by small molecule inhibitors, with clinical trials currently underway in 
prostate cancer [10]. Importantly, 27% of PTEN loss in prostate cancer 
involves a disruptive structural variant (Fig. 6), which would not be 
detected by currently available diagnostics. Failure to identify the full 
complement of relevant genomic events risks either depriving patients 

of a potentially useful therapy or yielding a false-negative clinical trial 
outcome due to inaccurate patient selection. Another example of a gene 
commonly inactivated by structural variants is RB1, an important 
biomarker of resistance to CDK4/6 inhibitors such as palbociclib, with 
this class of event contributing to 47% and 43% of RB1 inactivation in 
breast and ovarian cancer respectively (Fig. 6). Together, these findings 
underscore the importance of the defining and capturing the full range 
of genomic events that alter the activity of known cancer biomarkers. 

3. Discussion 

Equitable access to genomic testing requires a tumour-type agnostic 
platform that is both compatible with real-world delivery and maximises 
the amount of useful genomic information generated. This study pro
vides a pathway to the development of such assays, by defining the 
extent of the biologically and clinically relevant genomic space, and by 
characterising the classes and prevalence of genomic events that report 
this information. A key finding is the necessity to look beyond small 
coding variants in order to capture clinically useful information (Fig. 7), 
with disruptive structural variants highlighted as a clinically impactful 
variant class that is not currently reported by the majority of available 
assays. 

The cancer CORE feature set defines the current clinical biomarker 
space, covering approved therapy, clinical trials and strong pre-clinical 
biomarkers, along with markers of prognosis and treatment response/ 
resistance including immunotherapy for adult solid tumours. Targeted 
capture sequencing provides a technology platform to deliver the vast 
majority of this information using routinely processed clinical biopsy 
samples from common adult tumours. The PLUS and the MAX feature 
sets can be deployed for hypothesis-driven biomarker discovery and 
agnostic discovery respectively in therapeutic development. 

Genes that are specific to haematological cancers were excluded 
from the gene list, which is intended to be used for the to development of 
assays for common adult solid tumours. It is important to note, however, 
that the list of haematology-specific genes identified by this study is 
unlikely to represent the entirety of the genes implicated in haemato
logical malignancy, as the datasets used in this study are relatively un
derpowered for the detection of haemato-oncology driver genes. The 

Fig. 4. Contribution of different genomic variant 
types to the important driver events underpinning 
different cancer types. Analysis of the cancer CORE 
set of relevant genes. Note: due to the diverse targets, 
not all of which are covered in this analysis, the 
contribution of fusions will be under-estimated in the 
sarcoma profile; no FGFR fusions were detected in the 
biliary tract samples which is likely due to the lower 
prevalence of these alterations in East Asia (cohort 
origin: Singapore). SV: disruptive structural variant; 
mutation: single nucleotide variants and indels; NET: 
neuroendocrine tumour. Cancer type [number of 
samples]: colorectal [52], thyroid [48], endometrial 
[44], bladder [23], melanoma [107], NSCLC [84], 
hepatocellular [336], head & neck [56], cervical 
[20], biliary tract [12], gastric [68], pancreatic adeno 
[232], CNS [287], oesophageal [97], breast [211], 
renal [186], pancreatic-NET [81], ovarian [110], 
prostate [199], bone [61], sarcoma [34].   
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completion of a haemato-oncology assay would require analysis and 
curation of additional specific datasets to ensure comprehensive 
coverage. 

Whilst gene-level variants have traditionally been the major focus of 
cancer research, genome-level alterations provide additional clinically 
and biologically relevant information. Independent studies have high
lighted the potential prognostic impact of the degree of genomic dis
organisation within a tumour [19], and microsatellite instability and 
tumour mutational burden have recently risen to prominence in the 
context of predicting response to immunotherapy [12]. Additional 
predictors of response to immunotherapy that lie outside of the coding 
genome include the presence of viral DNA and the activity of endoge
nous retrotransposons [13,21]. 

A well-designed cancer assay is able to capture the vast majority of 
clinically relevant genomic information through targeted capture and 
sequencing of DNA, including gene level information as well as the 
genome-level alterations outlined above. For genes harbouring coding 
region drivers, targeting of all coding exons, including essential splice 
sites, is optimal for tumour suppressor genes and preferable for onco
genes. For tumour suppressor genes that are inactivated by structural 
variants (Fig. 5), targeting of the whole gene footprint is required in 
order to capture these events. For genes targeted by copy number al
terations, assay design should include enough targeted regions to ensure 
good resolution. This is particularly important for small genes such as 
B2M and BCL2 which may require additional regional intronic tiling in 
order to provide sufficient copy number resolution. For genes that are 
only targeted by copy number alteration and not by small variants, tiling 
of the entire coding region may not be necessary. The inclusion of a 
genome-wide copy number backbone can improve the quality of both 
gene and chromosome level copy number calling. The capture of gene 
fusions at the DNA level can be limited if the size of the genomic region 

in which the breakpoints cluster is large. Fortunately, the majority of the 
clinically important fusions found in common adult solid tumours can be 
captured at the DNA level, with tiling focused on the introns where the 
fusion breakpoints fall. Regarding tumour mutational burden, current 
evidence suggests that a genomic footprint of 1–1.5 Mb is sufficient for 
accurate estimation. Additional genomic features that may be consid
ered include regions of microsatellite instability, retrotransposons and 
genotyping SNPs (to ensure sample integrity). 

The content and design of individual cancer assays brings together 
considerations including target cancer type(s), the classes of variants to 
be detected and the overall size (and thus reagent costs) of the assay. 
Pan-cancer mutation prevalence for the driver genes identified in this 
study is shown in Supplementary Table 2, complemented by breakdown 
by tumour type and by variant class in Supplementary Tables 4 and 5 
respectively. Together, this information can be used to prioritise genes 
for inclusion, and to ensure that assays are designed to capture all 
relevant classes of genomic variant. Example overviews of potential 
assay designs are shown in Supplementary Table 6. 

The Cancer CORE feature list can be converted into a targeted cap
ture assay with a genomic footprint of approximately 1.8 Mb. This in
cludes full footprint tiling of 12 clinically important tumour suppressor 
genes and capture of 12 gene fusions, along with genome-wide copy 
number, microsatellite instability, tumour mutational burden and ret
rotransposon activity. The reagent costs for this type of design (covering 
targeted capture library preparation and Illumina sequencing) are in the 
region of €200 per sample. As such, this represents an affordable assay 
that is able to deliver the vast majority of clinically relevant information 
for common adult solid tumours. 

Together, this analysis provides a roadmap to unlock the utility of 
aggregated genomic knowledge, through the delivery of comprehensive 
genomic profiling for all cancer patients as part of routine clinical care. 

Fig. 5. Contribution of different genomic variant combinations to the inactivation of key tumour suppressor genes. Cancer CORE genes containing 10 or more driver 
variants across the PCAWG cohort. SV: disruptive structural variant; mutation: single nucleotide variants and indels. 
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4. Methods 

High-confidence cancer genes were defined according to objective 
criteria using data garnered from a comprehensive review of published 
analyses and genomic datasets [1,5–7,14,22–25,28] (Supplementary 
Table 1). For each gene, objective evidence supporting a role for somatic 

alteration in cancer was compiled by intersecting independent data 
sources, including studies based on mathematical models, to identify 
genes enriched for protein-altering mutations (‘driver genes’), genes 
harbouring recurrently mutated ‘hotspot’ codons, regions of recurrent 
copy number loss or gain, and recurrent gene fusion events (see Sup
plementary Methods for full details). The approach is predicated on the 
notion that each individual approach to driver gene identification will 
generate both true positive and false positive results. True positive re
sults with be replicated by different studies using either different 
methodologies or different underlying datasets. False positive results, 
however, are likely to be dataset and/or analytical method dependent, 
and are unlikely to be reproduced by different studies. Thus driver 
events identified by orthogonal approaches will be enriched for true 
driver genes. The variant types resulting in oncogenic alterations in the 
subset of these genes with current clinical utility were then charac
terised across 2348 unique whole genome sequences from solid tumours 
from the ICGC Pan-Cancer Analysis of Whole Genomes cohort [16], for 
which analysis of all classes of genomic alteration is available. 

Fig. 6. Contribution of different variant classes to genomic events resulting in disruption of PTEN and RB1 tumour suppressor genes. Cancer types with 5 or more 
driver variants in the relevant gene are shown. SV: disruptive structural variant; mutation: single nucleotide variants and indels; NET: neuroendocrine tumour. 

Fig. 7. Pan-cancer distribution of cancer relevant genomic information. Pro
portion of clinically relevant information delivered by variant class across 2348 
samples from the PCAWG pan-cancer cohort. TMB: high tumour mutational 
burden ≥12 mutations/Mb; MSI: microsatellite instability. 
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