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Application of the LymphGen classification tool to 928 genetically-
characterised cases of diffuse large B cell lymphoma (DLBCL). 
 
We recently published results of targeted sequencing applied to 928 unselected cases of 

DLBCL registered in the Haematological Malignancy Research Network (HMRN) registry (1). 

Clustering allowed us to resolve five genomic subtypes. These subtypes shared considerable 

overlap with those proposed in two independent genomic studies(2, 3), suggesting the 

potential to use genetics to stratify patients by both risk and biology. In the original studies, 

clustering techniques were applied to sample cohorts to reveal molecular substructure, but 

left open the challenge of how to classify an individual patient. This was addressed by the 

LymphGen classification tool (4). LymphGen assigns an individual case to one of six molecular 

subtypes. The tool accommodates data from exome or targeted sequencing, either with or 

without copy number variant (CNV) data. Separate gene expression data allows classification 

of a seventh, MYC-driven subtype defined by a double hit (DHL) or molecular high-grade 

(MHG) gene expression signature(5-7). 

 

Our large cohort of unselected registry patients, with comprehensive clinical and molecular 

annotation, provides an opportunity to examine the prognostic implications of the LymphGen 

classifier and to compare the robustness of cluster assignment across studies. Our sequencing 

panel provided only limited CNV data; therefore, we chose to enter exclusively mutation data. 

The LymphGen tool is able to accommodate mutation-only data, recognising that without 

CNV data the A53 subtype cannot be identified. We previously saw a strong negative 

prognostic effect of truncating NOTCH1 mutation(1); we therefore modified our original 

classification to annotate all patients with truncating exon-34 NOTCH1 mutation as a distinct 

subgroup. We compared the classification assigned by our own clustering to that assigned by 

the LymphGen classifier. 

 

Our original clustering assigned a molecular subtype to 73% of cases. LymphGen assigned a 

unique classification in 53% (489 cases) (Figure 1A and Supplementary Table 1). 46% 

remained unclassified. 1% were assigned to overlapping categories of uncertain significance. 

We restricted further analysis to the 477 cases confidently classified in both our study and by 

the LymphGen classifier to establish the extent of agreement at the level of individual samples 

(Figure 1B).  

 

We saw strong consensus amongst these cases, with 86% classified to the analogous 

LymphGen subtype (Figure 1B). In particular, we saw 95% overlap between MYD88 & MCD 

subgroups and 96% overlap between BCL2 and EZB subgroups. Our SOCS1/SGK1 and 

TET2/SGK1 clusters represented subdivisions of the ST2 cluster with 89% of ST2 cases 

corresponding to one of these subgroups. This considerable overlap between separate 

classification strategies, identified using independent statistical approaches, demonstrates 

the robust reproducibility amongst the “core” members of these molecular subtypes. 

However, 47% of our patients did not receive a unique LymphGen classification. In part, this 

may relate to the lack of CNV data, precluding A53 identification. However, the A53 group 

represented only 7% of cases in the LymphGen study. Accordingly, even with full CNV data 

the original LymphGen publication classified only 57% of cases. In contrast, the original 

Chapuy assigned a classification to 96% of patients. Taken together, we conclude that 

analogous subgroups identified across studies represent the same robust, biological entities 
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but that different classifications tolerate differing thresholds of uncertainty when assigning a 

subtype (Figure 1C). That is to say, the main variation between classifications is whether a 

case is classified at all, rather than the movement of confidently classified cases from one 

subgroup to another. 

 

We then looked at the prognostic implication of the LymphGen classifier in our cohort of 

patients. Strengths of our registry cohort include the large patient number, meticulous clinical 

annotation and comprehensive enrolment of every DLBCL diagnosis without confounding 

referral bias. The LymphGen classifier suggests use of gene expression to identify a MYC-

driven subgroup of the EZB cluster. Since gene expression was not available for every patient, 

and in an attempt to probe the utility of a mutation-only strategy, we took advantage of a 

recent observation that MYC mutations at codons 57-60 associate strongly with MYC-

rearranged or MHG DLBCL(6, 8). We used the presence of these mutations to define a MYC-

driven subgroup of the EZB cluster.  

 

Our previous analysis emphasised the importance of considering prognostic impact in 

homogeneously treated patients(1). Therefore, we restricted our analysis to patients 

receiving full dose R-CHOP. We excluded patients treated with regimens considered R-CHOP-

like, who frequently received considerably attenuated chemotherapy and were not equally 

distributed across genomic subtypes(1)(Supplementary Table 2). 

 

We saw poor survival amongst patients assigned to the N1 group, a finding consistent across 

studies (Figure 2A,B). The MYC-EZB subgroup was also associated with poor survival, 

consistent with MYC/BCL2 rearranged DLBCL(9). In contrast, the ST2 subgroup was associated 

with favourable outcome. However, the prognostic impact of the remaining subtypes (MCD, 

EZB, BN2) did not achieve significance in R-CHOP treated cases. Unclassified cases had an 

intermediate survival (Figure 2A,B). Comparison with the international prognostic index (IPI) 

suggests that clinical factors remain a dominant determinant of survival in DLBCL but that 

genetic classification provides independent prognostic information over and above the IPI 

(Figure 2C,D & Supplementary Table 2). 

 

In summary, we conclude that mutation-only data from targeted sequencing allows a 

confident LymphGen classification in just over half of patients. These cases show strong 

consensus across different classification strategies, reinforcing the robust reproducibility of 

the core disease subgroups. Identification of the A53 subgroup will require either exome data 

or a panel specifically designed to provide the required CNV data. Both N1 and MYC-EZB, were 

associated with markedly inferior prognosis, whilst ST2 showed consistently favourable 

outcome. We did not observe significant prognostic impact from MCD, EZB and BN2 

subgroups in R-CHOP treated patients. Nevertheless, the greatest potential of this 

classification will be to allow biological stratification of a disease where genetic heterogeneity 

will otherwise stymie our ability to assess the benefit of biologically targeted therapy, where 

efficacy may be restricted to specific biological subtypes. Whilst knowledge of the molecular 

subtype may not yet define the optimal therapy for an individual patient it will allow us to 

design and interpret clinical trials of these agents in the future. 
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Figure Legends 
 

Figure 1 
A) Sankey plots showing comparison of HMRN and LymphGen classifications in all 928 cases 

of DLBCL or B) in the 477 cases for whom a unique molecular subtype was assigned by both 

classifications. C) A conceptual, schematic diagram of the molecular classification of DLBCL. 

The genes most frequently altered in each subtype are indicated. Colour intensity reflects 

the classification confidence. The LymphGen cluster names and terms used in HMRN and 

Chapuy publications are indicated in red, black and blue respectively. 

 

Figure 2 
A-C) Overall and progression free survival for R-CHOP treated DLBCL patients stratified by A) 

LymphGen classification, B) modified HMRN classification (incorporating NOTCH1 and BCL2-

MYC subgroups), or C) by IPI score. The outcome of unclassified patients (labelled “Other”) 

is shown in grey in A and B. Statistical analysis in A shows log rank p-value for the indicated 

comparisons. D) IPI-adjusted hazard ratios for classified patients treated with R-CHOP are 

shown relative to the unclassified “Other” patients.  Hazard ratios were calculated using a 

Cox model based on either OS or PFS as indicated. 
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Supplementary Figure Legends 
 
Supplementary Figure 1 
The distribution of age, IPI score, COO, tumour histology and treatment regimen is shown 

for each of the subgroups classified by LymphGen or the modified HMRN criteria. 

 

 

 

Supplementary Tables 
 

Supplementary Table 1 
Table showing the molecular subgroups assigned to all 928 patients in the original HMRN 

study (Lacy et al) compared to that from the LymphGen classifier.  

 

Supplementary Table 2 
Unadjusted and IPI-adjusted hazard ratios for R-CHOP-treated patients classified by either 

Modified HMRN or the LymphGen classifier relative to the unclassified “Other” patients. 

Hazard ratios were calculated by Cox model for both OS and PFS as indicated. 
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Supplementary Table 2          Unadjusted and IPI-adjusted Hazard Ratios 

Modified_HMRN_Class, Overall Survival. Baseline Class = “Other”.  
N = 648 (312 events) Unadjusted, N = 535 (248 events) Adjusted. 

 Unadjusted 
Hazard Ratio 
(95% CI) 

p-value IPI Adjusted 
Hazard Ratio (95% CI) 

p-value 

BCL2 0.86 (0.62, 1.19) 0.36 0.70 (0.48, 1.03) 0.069 
BCL2-MYC         1.37 (0.55, 3.38) 0.50 1.04 (0.37, 2.91) 0.94 
MYD88 1.26 (0.89, 1.80) 0.20 1.32 (0.90, 1.95) 0.16 
NOTCH1 1.92 (1.07, 3.45) 0.029 1.81 (0.95, 3.45) 0.07 
NOTCH2 1.13 (0.80, 1.59) 0.49 0.94 (0.63, 1.39) 0.75 
SOCS1/SGK1       0.42 (0.26, 0.68) 0.00037 0.47 (0.27, 0.80) 0.0054 
TET2/SGK1        0.74 (0.48, 1.15) 0.18 0.76 (0.47, 1.22) 0.26 

 

Modified_HMRN_Class, Progression Free Survival. Baseline Class = “Other”.  
N = 594 (317 events) Unadjusted, N = 514 (269events) Adjusted. 

 Unadjusted 
Hazard Ratio 
(95% CI) 

p-value IPI Adjusted 
Hazard Ratio (95% CI) 

p-value 

BCL2 0.94 (0.67, 1.30) 0.70 0.82 (0.57, 1.19) 0.30 
BCL2-MYC         1.35 (0.55, 3.33) 0.52 1.14 (0.41, 3.18) 0.80 
MYD88 1.45 (1.03, 2.03) 0.034 1.53 (1.06, 2.20) 0.022 
NOTCH1 2.19 (1.22, 3.93) 0.0088 1.99 (1.07, 3.68) 0.029 
NOTCH2 1.21 (0.86, 1.70) 0.28 0.95 (0.64, 1.40) 0.79 
SOCS1/SGK1       0.43 (0.26, 0.70) 0.00067 0.47 (0.28, 0.81) 0.0061 
TET2/SGK1        0.68 (0.44, 1.06) 0.091 0.69 (0.43, 1.11) 0.13 

 
Lymphgen_Class_MYC, Overall Survival. Baseline Class = “Other”.  
N = 648 (312 events) Unadjusted, N = 535 (248 events) Adjusted. 

 Unadjusted 
Hazard Ratio 
(95% CI) 

p-value IPI Adjusted 
Hazard Ratio (95% CI) 

p-value 

BN2 1.10 (0.73, 1.64) 0.66 0.85 (0.54, 1.34) 0.48 
EZB 0.97 (0.73, 1.29) 0.83 0.80 (0.57, 1.12) 0.20 
EZB-MYC 1.49 (0.61, 3.63) 0.38 0.86 (0.27, 2.74) 0.80 
MCD 1.39 (0.95, 2.05) 0.094 1.43 (0.94, 2.16) 0.095 
N1 1.84 (0.97, 3.49) 0.063 1.91 (0.96, 3.80) 0.064 
ST2 0.55 (0.36, 0.86) 0.0085 0.70 (0.44, 1.12) 0.13 

 

Lymphgen_Class_MYC, Progression Free Survival. Baseline Class = “Other”.  
N = 594 (317events) Unadjusted, N = 514 (269 events) Adjusted. 

 Unadjusted 
Hazard Ratio 
(95% CI) 

p-value IPI Adjusted 
Hazard Ratio (95% CI) 

p-value 

BN2 1.05 (0.70, 1.59) 0.80 0.81 (0.52, 1.28) 0.37 
EZB 1.05 (0.79, 1.39) 0.73 0.89 (0.65, 1.22) 0.47 
EZB-MYC 1.39 (0.57, 3.40) 0.47 0.89 (0.28, 2.84) 0.85 
MCD 1.33 (0.91, 1.95) 0.14 1.36 (0.91, 2.04) 0.13 
N1 2.11 (1.11, 4.00) 0.023 2.13 (1.11, 4.08) 0.023 
ST2 0.60 (0.39, 0.92) 0.020 0.71 (0.45, 1.11) 0.13 

 


