186 research outputs found

    Paradoxical Association of C-Reactive Protein with Endothelial Function in Rheumatoid Arthritis

    Get PDF
    Background: Within the general population, levels of C-reactive protein (CRP) are positively associated with atherosclerotic cardiovascular disease (CVD). Whether CRP is causally implicated in atherogenesis or is the results of atherosclerosis is disputed. A role of CRP to protect endothelium-derived nitric oxide (EDNO) has been suggested. We examined the association of CRP with EDNO-dependent vasomotor function and subclinical measures of atherosclerosis and arteriosclerosis in patients with raised CRP resulting from rheumatoid arthritis (RA).Methodology/Principal Findings: Patients with RA (n = 59) and healthy control subjects (n = 123), underwent measures of high sensitivity CRP, flow-mediated dilation (FMD, dependent on EDNO), intima-media thickness (IMT, a measure of subclinical atherosclerosis) and aortic pulse wave velocity (PWV, a measure of arteriosclerosis). IMT and PWV were elevated in patients with RA compared to controls but FMD was similar in the two groups. In patients with RA, IMT and PWV were not correlated with CRP but FMD was positively independently correlated with CRP (P<0.01).Conclusions/Significance: These findings argue against a causal role of CRP in atherogenesis and are consistent with a protective effect of CRP on EDNO bioavailability

    Strong Depth-Related Zonation of Megabenthos on a Rocky Continental Margin (∼700–4000 m) off Southern Tasmania, Australia

    Get PDF
    Assemblages of megabenthos are structured in seven depth-related zones between ~700 and 4000 m on the rocky and topographically complex continental margin south of Tasmania, southeastern Australia. These patterns emerge from analysis of imagery and specimen collections taken from a suite of surveys using photographic and in situ sampling by epibenthic sleds, towed video cameras, an autonomous underwater vehicle and a remotely operated vehicle (ROV). Seamount peaks in shallow zones had relatively low biomass and low diversity assemblages, which may be in part natural and in part due to effects of bottom trawl fishing. Species richness was highest at intermediate depths (1000–1300 m) as a result of an extensive coral reef community based on the bioherm-forming scleractinian Solenosmilia variabilis. However, megabenthos abundance peaked in a deeper, low diversity assemblage at 2000–2500 m. The S. variabilis reef and the deep biomass zone were separated by an extensive dead, sub-fossil S. variabilis reef and a relatively low biomass stratum on volcanic rock roughly coincident with the oxygen minimum layer. Below 2400 m, megabenthos was increasingly sparse, though punctuated by occasional small pockets of relatively high diversity and biomass. Nonetheless, megabenthic organisms were observed in the vast majority of photographs on all seabed habitats and to the maximum depths observed - a sandy plain below 3950 m. Taxonomic studies in progress suggest that the observed depth zonation is based in part on changing species mixes with depth, but also an underlying commonality to much of the seamount and rocky substrate biota across all depths. Although the mechanisms supporting the extraordinarily high biomass in 2000–2500 m depths remains obscure, plausible explanations include equatorwards lateral transport of polar production and/or a response to depth-stratified oxygen availability

    The Structure of the {\beta} Leonis Debris Disk

    Get PDF
    We combine nulling interferometry at 10 {\mu}m using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 {\mu}m using Spitzer to study the debris disk around {\beta} Leo over a broad range of spatial scales, corresponding to radii of 0.1 to ~100 AU. We have also measured the close binary star o Leo with both Keck and MMT interferometers to verify our procedures with these instruments. The {\beta} Leo debris system has a complex structure: 1.) relatively little material within 1 AU; 2.) an inner component with a color temperature of ~600 K, fitted by a dusty ring from about 2 to 3 AU; and 3.) a second component with a color temperature of ~120 K fitted by a broad dusty emission zone extending from about ~5 AU to ~55 AU. Unlike many other A-type stars with debris disks, {\beta} Leo lacks a dominant outer belt near 100 AU.Comment: 14 page body, 3 page appendix, 15 figure

    Multidimensional heritability analysis of neuroanatomical shape

    Get PDF
    In the dawning era of large-scale biomedical data, multidimensional phenotype vectors will play an increasing role in examining the genetic underpinnings of brain features, behaviour and disease. For example, shape measurements derived from brain MRI scans are multidimensional geometric descriptions of brain structure and provide an alternate class of phenotypes that remains largely unexplored in genetic studies. Here we extend the concept of heritability to multidimensional traits, and present the first comprehensive analysis of the heritability of neuroanatomical shape measurements across an ensemble of brain structures based on genome-wide SNP and MRI data from 1,320 unrelated, young and healthy individuals. We replicate our findings in an extended twin sample from the Human Connectome Project (HCP). Our results demonstrate that neuroanatomical shape can be significantly heritable, above and beyond volume, and can serve as a complementary phenotype to study the genetic determinants and clinical relevance of brain structure.National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41EB015896)United States. National Institutes of Health (S10RR023043)United States. National Institutes of Health (S10RR023401)United States. National Institutes of Health (K25CA181632)United States. National Institutes of Health (K01MH099232)United States. National Institutes of Health (K99MH101367)United States. National Institutes of Health (R21AG050122-01A1)United States. National Institutes of Health (R41AG052246-01)United States. National Institutes of Health (1K25EB013649-01)United States. National Institutes of Health (K24MH094614)United States. National Institutes of Health (R01MH101486

    Subsoil contraints and their management: Overview from five years of R&D

    Get PDF
    Subsoil constraints cost the grains industry more than $1.6b in lost production each year. Diagnosing and mapping subsoil constraints (SSC) was achieved at a shire scale using the DPIRD soils database and historic surveys

    Dopamine Genetic Risk Score Predicts Depressive Symptoms in Healthy Adults and Adults with Depression

    Get PDF
    Background: Depression is a common source of human disability for which etiologic insights remain limited. Although abnormalities of monoamine neurotransmission, including dopamine, are theorized to contribute to the pathophysiology of depression, evidence linking dopamine-related genes to depression has been mixed. The current study sought to address this knowledge-gap by examining whether the combined effect of dopamine polymorphisms was associated with depressive symptomatology in both healthy individuals and individuals with depression. Methods: Data were drawn from three independent samples: (1) a discovery sample of healthy adult participants (n = 273); (2) a replication sample of adults with depression (n = 1,267); and (3) a replication sample of healthy adult participants (n = 382). A genetic risk score was created by combining functional polymorphisms from five genes involved in synaptic dopamine availability (COMT and DAT) and dopamine receptor binding (DRD1, DRD2, DRD3). Results: In the discovery sample, the genetic risk score was associated with depressive symptomatology (β = −0.80, p = 0.003), with lower dopamine genetic risk scores (indicating lower dopaminergic neurotransmission) predicting higher levels of depression. This result was replicated with a similar genetic risk score based on imputed genetic data from adults with depression (β = −0.51, p = 0.04). Results were of similar magnitude and in the expected direction in a cohort of healthy adult participants (β = −0.86, p = 0.15). Conclusions: Sequence variation in multiple genes regulating dopamine neurotransmission may influence depressive symptoms, in a manner that appears to be additive. Further studies are required to confirm the role of genetic variation in dopamine metabolism and depression

    Global birth defects app: An innovative tool for describing and coding congenital anomalies at birth in low resource settings

    Get PDF
    BACKGROUND: Surveillance programs in low- and middle-income countries (LMICs) have difficulty in obtaining accurate information about congenital anomalies. METHODS: As part of the ZikaPLAN project, an International Committee developed an app for the description and coding of congenital anomalies that are externally visible at birth, for use in low resource settings. The “basic” version of the app was designed for a basic clinical setting and to overcome language and terminology barriers by providing diagrams and photos, sourced mainly from international Birth Defects Atlases. The “surveillance” version additionally allows recording of limited pseudonymized data relevant to diagnosis, which can be uploaded to a secure server, and downloaded by the surveillance program data center. RESULTS: The app contains 98 (88 major and 10 minor) externally visible anomalies and 12 syndromes (including congenital Zika syndrome), with definitions and International Classification of Disease v10 -based code. It also contains newborn examination videos and links to further resources. The user taps a region of the body, then selects among a range of images to choose the congenital anomaly that best resembles what they observe, with guidance regarding similar congenital anomalies. The “basic” version of the app has been reviewed by experts and made available on the Apple and Google Play stores. Since its launch in November 2019, it has been downloaded in 39 countries. The "surveillance” version is currently being field-tested. CONCLUSION: The global birth defects app is a mHealth tool that can help in developing congenital anomaly surveillance in low resource settings to support prevention and care

    Silence on Shangri-La: attenuation of Huygens acoustic signals suggests surface volatiles

    Get PDF
    Objective: Characterize and understand acoustic instrument performance on the surface of Titan. Methods: The Huygens probe measured the speed of sound in Titan's atmosphere with a 1 MHz pulse time-of-flight transducer pair near the bottom of the vehicle. We examine the fraction of pulses correctly received as af unction of time. Results: This system returned good data from about 11 km altitude, where the atmosphere became thick enough to effectively transmit the sound, down to the surface just before landing: these data have been analyzed previously. After an initial transient at landing, the instrument operated nominally for about 10 min, recording pulses much as during descent. The fraction of pulses detected then declined and the transmitted sound ceased to be detected altogether, despite no indication of instrument or probe configuration changes. Conclusions: The most likely explanation appears to be absorption of the signal by polyatomic gases with relaxation losses at the instrument frequency, such as ethane, acetylene and carbon dioxide. These vapors, detected independently by the GCMS instrument, were evolved from the surface material by the warmth leaking from the probe, and confirm the nature of the surface materials as ‘damp’ with a cocktail of volatile compounds. Some suggestions for future missions are considered. Practice implications: None
    corecore