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Multidimensional heritability analysis of
neuroanatomical shape
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In the dawning era of large-scale biomedical data, multidimensional phenotype vectors will

play an increasing role in examining the genetic underpinnings of brain features, behaviour

and disease. For example, shape measurements derived from brain MRI scans are multi-

dimensional geometric descriptions of brain structure and provide an alternate class of

phenotypes that remains largely unexplored in genetic studies. Here we extend the concept of

heritability to multidimensional traits, and present the first comprehensive analysis of the

heritability of neuroanatomical shape measurements across an ensemble of brain structures

based on genome-wide SNP and MRI data from 1,320 unrelated, young and healthy

individuals. We replicate our findings in an extended twin sample from the Human

Connectome Project (HCP). Our results demonstrate that neuroanatomical shape can be

significantly heritable, above and beyond volume, and can serve as a complementary

phenotype to study the genetic determinants and clinical relevance of brain structure.
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T
he exponential progress in genomic technologies has
accelerated the examination of the genetic underpinnings
of complex phenotypes, such as psychiatric and neuro-

logical disorders, many of which are highly heritable1,2. For
example, large-scale genome-wide association studies (GWASs)
have provided insights about common genetic variants linked
with a range of clinical conditions3–6. Most prior genetic studies
have focused on univariate (scalar) phenotypes, such as diagnosis
or a quantitative measurement. However, with the emergence
of large-scale data collection efforts, such as the Human
Connectome Project (HCP; http://www.humanconnectome.org)
and the UK Biobank (http://www.ukbiobank.ac.uk), each subject
can be linked to a high-dimensional phenotype vector, which
might include imaging measurements or electronic health record.
Such phenotypically rich studies open up the opportunity to
analyse collections of multidimensional phenotypes, which can be
more informative than scalar traits.

Brain imaging is playing an increasing role in the study
of the relationship between genetic variants, neuroanatomy,
behaviour and disease susceptibility7–10. To date, most structural
neuroimaging genetics studies have utilized the size, average
cortical thickness or surface area of a brain region to yield
important discoveries about the genetic basis of brain
morphology (see, for example, refs 11–14). While these
measurements capture a few basic dimensions of anatomical
variability, they provide a limited description of the underlying
geometry.

Neuroanatomical shape measurements—multidimensional
geometric descriptions of brain structure—have attracted
increasing attention in medical image analysis. Shape measure-
ments characterize isometry-invariant (in particular, independent
of location and orientation) geometric attributes of an object,
which provide a rich description of an anatomical structure and
can encompass volumetric variation. Such measurements may
thus offer increased sensitivity and specificity in examining the
clinical relevance and genetic underpinnings of brain structure.
Recent studies have shown that the shape of subcortical brain
regions and cortical folding patterns provide information that is
not available in volumetric measurements and is predictive of
disease status, onset and progression in schizophrenia15–17,
autism18,19, bipolar disorder20,21, Alzheimer’s disease22–25 and
other mental disorders26,27. There is also increasing evidence that
genetic variants may have influences on brain morphology that
can be captured by shape measurements28–32.

This paper makes two major contributions to the investigation
of the genetic basis of neuroanatomical shape. First, we extend the
theoretical concept of heritability to multidimensional traits, such
as the shape descriptor of an object, and propose a novel method
to estimate the heritability of multidimensional traits based on
genome-wide single-nucleotide polymorphism (SNP) data from
unrelated individuals (known as SNP heritability). Our estimation
method builds on genome-wide complex trait analysis33,34 and
phenotype correlation–genetic correlation regression35, and
generalizes these techniques to the multivariate setting. Second,
using structural magnetic resonance imaging (MRI) and SNP
data from 1,320 unrelated individuals collected as part of
the Harvard/Massachusetts General Hospital (MGH) Brain
Genomics Superstruct Project (GSP)36,37, we present the first
comprehensive heritability analysis of the shape of an ensemble of
brain structures, quantified by the truncated Laplace–Beltrami
spectrum (LBS; also known as the ‘Shape-DNA’)38–40, in this
young (18–35 years) and healthy cohort, and devise a strategy to
visualize primary modes of shape variation. We also replicate
our findings in an extended twin sample (72 monozygotic (MZ)
twin pairs, 69 dizygotic (DZ) twin pairs, 253 full siblings of
twins and 55 singletons) from the HCP41.

The truncated LBS is a multidimensional shape descriptor,
which can be obtained by solving an eigenvalue problem on the
two-dimensional (2D) boundary surface representation of an
object. It is invariant to the representation of the object including
parameterization, location and orientation, and thus does not
require spatial alignment with a population template, making it
computationally efficient and robust to registration errors. LBS
also depends continuously on topology-preserving deformations,
and is thus suitable to quantify differences between shapes.
Recent empirical evidence suggests that the LBS-based shape
descriptor provides a discriminative characterization of brain
anatomy and offers state-of-the-art performance for a range of
shape retrieval and segmentation applications42,43. A collection of
the descriptors of brain structures, known as the BrainPrint,
can provide an accurate and holistic representation of brain
morphology, and has been successfully applied to subject
identification, sex and age prediction, brain asymmetry analysis,
twin studies, and computer-aided diagnosis of dementia40,44.
Our LBS-based heritability analyses demonstrate that neuro-
anatomical shape can be significantly heritable, above and beyond
volume, and yield a complementary phenotype that offers a
unique perspective in studying the genetic determinants of brain
structure.

Results
Heritability of the volume of neuroanatomical structures. To
benchmark our shape results, we first computed SNP heritability
estimates for the volumetric measurements of an array of brain
regions using the GSP sample. Table 1 lists these heritability
estimates after adjusting for intracranial volume (or head size) as
a covariate. Point estimates of the heritability of volumetric
measurements suggested that several neuroanatomical structures
have moderately heritable volumes. In particular, the caudate,
corpus callosum, lateral ventricle, third and fourth ventricles,
pallidum, putamen, and thalamus all had volume heritability
estimates 425%. Table 1 further includes P values for the
statistical significance of the heritability estimates. The parametric
(Wald) and nonparametric (permutation-based) P values were
virtually identical, confirming the accuracy of the s.e. estimates we
computed (see Methods). We observe that none of the volume
heritability estimates were statistically significant after correcting
for multiple comparisons (false discovery rate (FDR) at q¼ 0.05),
possibly due to sample size limitations. Only the volumes of the
caudate, corpus callosum and third ventricle achieved a herit-
ability that was nominally significant in our sample (uncorrected
Po0.05). Table 1 also includes test–retest reliability estimates of
volume after regressing out intracranial volume, computed as
Lin’s concordance correlation coefficient45 using measurements
from 42 subjects with repeated scans on separate days. Almost all
the structures had a volume estimate reliability 40.75 except for
the pallidum. There was no significant correlation between the
reliability and heritability estimates of volume (P¼ 0.828).

Heritability of the shape of neuroanatomical structures.
Neuroanatomical shape measurements provide a geometric
characterization and a rich description of brain structure.
We therefore hypothesize that analysing the shape variation of
neuroanatomical structures can identify genetic influences
beyond captured by volumetric measurements. Figure 1 and
Table 2 show the SNP heritability estimates of the shape of
an ensemble of brain structures using the GSP sample. These
estimates were computed based on LBS descriptors normalized
for size and explicitly including the volume of the corresponding
structure as a covariate in the analysis to account for potential
volume effects. A number of structures showed moderate-to-high
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SNP heritability. Specifically, the shape of the caudate,
cerebellum, corpus callosum, hippocampus, third ventricle and
putamen exhibited heritability estimates 425%. All these
estimates were statistically significant after correcting for an FDR
at q¼ 0.05. We observe that this is in contrast with the case of

volume, where despite a similar heritability range, no estimate
reached FDR-corrected significance. The main reason for this
discrepancy is the theoretically guaranteed reduced s.e.’s in SNP
heritability estimates of multidimensional traits (see Methods for
a theoretical treatment). The shape of the accumbens area was
also marginally significantly heritable with an uncorrected P value
o0.05. As in the case of volume, the parametric (Wald) P values
were virtually identical to the permutation P values, suggesting
that our s.e. estimates are accurate (see Methods).

Table 2 also lists test–retest reliability estimates for the shape of
different structures. Analogous to the case of volume, we
quantified reliability as the average Lin’s concordance correlation
coefficient of individual components of the multidimensional
shape descriptor from 42 subjects with repeat scans on separate
days. These results suggest that the LBS-based shape descriptors
were overall less reliable than volumetric measurements, with half
of the structures exhibiting a shape reliability o0.75. This is likely
due to the increased sensitivity of shape to segmentation
differences relative to the volume. Furthermore, there was a
marginally significant correlation between reliability and herit-
ability of shape (Pearson’s r¼ 0.562 and P¼ 0.057). We conclude
that close to 30% of the variation in shape heritability across
structures can be attributed to the reliability of the shape
descriptor. This suggests that for structures that exhibited low
shape heritability (for example, amygdala), a more accurate image
segmentation and shape analysis pipeline might yield an
increased estimate of heritability. We further conducted a
sensitivity analysis of shape heritability estimates, with respect
to the two free parameters of the LBS-based shape descriptor:
number of eigenvalues incorporated and amount of smoothing
applied to the surface mesh representing the geometry of the
object. Supplementary Figure 1 shows that the heritability
estimates were largely robust to variations in these parameters.

We sought to replicate these findings in the HCP sample, in
which subjects are healthy and have a similar age range as the
GSP sample. We selected 590 non-Hispanic/Latino Europeans
aged between 22 and 35 years, comprising 72 MZ twin pairs,
69 DZ twin pairs, 253 full siblings of twins and 55 singletons
(single birth individuals without siblings). We estimated the
shape heritability for brain structures that had significantly
heritable shapes in the GSP sample using an ACE model
(A: additive genetics; C: common environment; E: unique or
subject-specific environment), where the additive genetic simi-
larity was derived from pedigree information and the common
environment term reflected household sharing between subjects.
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Figure 1 | SNP heritability estimates of the shape of brain structures in

the GSP sample. Top: lateral view. Bottom: medial cross-section.

Table 1 | SNP heritability estimates ĥ2
SNP of the volume of brain structures using the GSP sample.

Structure ĥ2
SNP s.e. Wald P value Perm P value Reliability

Accumbens area 0.001 0.281 0.500 1.000 0.797
Amygdala 0.141 0.281 0.308 0.305 0.864
Caudate 0.657 0.281 0.010 0.009 0.947
Cerebellum 0.084 0.281 0.383 0.382 0.989
Corpus callosum 0.538 0.281 0.028 0.029 0.882
Hippocampus 0.005 0.281 0.493 0.492 0.939
Lateral Ventricle 0.331 0.281 0.119 0.120 0.995
Third ventricle 0.500 0.281 0.038 0.040 0.832
Fourth ventricle 0.381 0.281 0.087 0.089 0.986
Pallidum 0.300 0.281 0.142 0.142 0.642
Putamen 0.328 0.281 0.121 0.122 0.934
Thalamus 0.252 0.281 0.184 0.186 0.867

GSP, Genomics Superstruct Project; SNP, single-nucleotide polymorphism.
The s.e.’s were computed using an approximation, which, given the empirical genetic similarity matrix, only depends on the sample size. P values were obtained by the Wald test and permutation
inference (based on 10,000 permutations), respectively. The strong agreement between the parametric and nonparametric P values indicates that the estimated s.e. values are accurate. Estimates with
uncorrected significant P values (o0.05) are shown in bold. Test–retest reliability of the volumetric measurements was computed as Lin’s concordance correlation coefficient using measurements from
42 subjects with repeated scans on separate days.
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We also obtained the s.e. of the shape heritability estimates using
a block bootstrapping procedure (see Methods). All the shapes we
analysed were significantly heritable in the HCP sample:
accumbens area 0.309±0.081; caudate 0.583±0.062; cerebellum
0.653±0.060; corpus callosum 0.558±0.068; hippocampus
0.363±0.095; third ventricle 0.536±0.067; and putamen
0.483±0.106. We also observe that the HCP shape heritability
estimates were consistently larger than the GSP estimates, which
is theoretically expected because the SNP heritability estimated
from unrelated GSP subjects only captured the genetic variation
tagged by common SNPs in the data set, and is thus a lower
bound for the classical narrow-sense heritability estimated from
familial data such as the HCP sample.

Visualizing the principal mode of shape variation. The
LBS-based shape descriptor is suitable to efficiently and accu-
rately extract intrinsic properties of the shape of brain structures
from a large number of individuals, but is not designed to visually
inspect shape differences. Here we propose a strategy to visualize
the principal mode of shape variation. Specifically, it can be
shown that the first principal component (PC) of the multi-
dimensional LBS-based shape descriptor captures the greatest
shape variation and has the largest impact on the overall herit-
ability estimate of the shape (see Methods). We thus visualized
shape variation along the first PC of the shape descriptor for brain
structures with significantly heritable shapes in the GSP sample:
right caudate, cerebellum, corpus callosum, right hippocampus,
third ventricle and left putamen. The illustrations of contralateral
structures (that is, left caudate, left hippocampus and right
putamen), which showed similar shape variation, are provided in
Supplementary Fig. 2. In each panel of Fig. 2, the structure is
represented with a sample-specific population average, on which
average shapes at the two extremes (±2 s.d.) of the principal axis
with identical volume (� 2 s.d., blue; þ 2 s.d., red) are depicted.
Blue regions indicate where shapes around the � 2 s.d. are larger
than shapes around the þ 2 s.d., and vice versa for the red
regions.

The first PC of the right caudate captured 77% of the shape
variation and had a SNP heritability estimate of 0.88. Moving
along the principal mode of shape variation, the right caudate had
a larger (smaller) head with a corresponding shorter (longer) tail.
For the cerebellum, the first PC explained 69% of the shape
variation and had a SNP heritability of 0.61. A clear expansion
(contraction) of the anterior lobe and a corresponding contrac-
tion (expansion) of the posterior lobe can be observed along the

principal axis. The first PC of the corpus callosum captured 41%
of the shape variation and had a SNP heritability of 0.41. The
principal mode captured an expansion (contraction) of the
middle corpus callosum along the dorsoventral axis and a
corresponding shrinking (enlargement) of the anterior and
posterior part of the structure. For the right hippocampus,
the first PC explained 69% of the shape variation, had a
SNP heritability of 0.47 and exhibited dorsoventral widening

Table 2 | SNP heritability estimates ĥ2
SNP of the shape of brain structures using the GSP sample.

Structure ĥ2
SNP s.e. Wald P value Perm P value Reliability

Accumbens area 0.237 0.135 0.039 0.039 0.418
Amygdala 0.061 0.139 0.330 0.327 0.670
Caudate 0.499 0.188 0.004 0.005 0.759
Cerebellum 0.452 0.192 0.009 0.009 0.844
Corpus Callosum 0.264 0.133 0.023 0.022 0.622
Hippocampus 0.347 0.169 0.020 0.019 0.866
Lateral Ventricle 0.190 0.153 0.107 0.105 0.890
Third ventricle 0.500 0.157 0.001 0.001 0.761
Fourth ventricle 0.005 0.208 0.490 0.491 0.633
Pallidum 0.061 0.117 0.299 0.299 0.402
Putamen 0.413 0.148 0.003 0.003 0.781
Thalamus Proper 0.086 0.143 0.274 0.276 0.552

GSP, Genomics Superstruct Project; SNP, single-nucleotide polymorphism.
S.e.’s are less than those corresponding to volume heritability. P values were obtained by the Wald test and permutation inference (based on 10,000 permutations), respectively. The strong agreement
between the parametric and nonparametric P values indicates that the s.e. estimates are accurate. Estimates with uncorrected significant P values (o0.05) are shown in bold. False discovery rate -
corrected significant P values (o0.05) are shown in italics. Test–retest reliability of the shape measurements were computed as the average Lin’s concordance correlation coefficient of individual
components of the LBS-based shape descriptor from 42 subjects with repeated scans on separate days.
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Figure 2 | The principal mode of shape variation for brain structures

with significantly heritable shape in the GSP sample. Each structure is
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(narrowing) of the body and corresponding lateral and anterior–
posterior contraction (expansion). The first PC of the third
ventricle captured 69% of the shape variation and had a SNP
heritability estimate of 0.80. The principal mode captured an
enlargement (shrinking) of the posterior protrusions and an
expansion (contraction) of the lateral walls, coupled with a
corresponding contraction (expansion) of the roof of the cleft.
Finally, first PC of the left putamen explained 61% of the
shape variation, had a SNP heritability of 0.70, and captured
lateral widening (narrowing) and a corresponding contraction
(expansion) along the dorsoventral and anterior–posterior axes.

Discussion
This work makes two contributions to neuroscience and genetic
research. First, we extend the concept of heritability to
multidimensional traits and present an analytic strategy that
generalizes SNP heritability analysis. The heritability estimator we
propose for multidimensional traits has reduced uncertainty in its
point estimate relative to univariate estimates, and thus offers
more statistical power. Our empirical analyses confirmed this
theoretical expectation. Moreover, and in the same line,
we provide methods that can easily adjust for covariates in
multivariate models, and also both parametric and nonparametric
inferential tools that can assess the significance of a heritability
estimate. Our approach opens the door to the genetic
characterization of shape measurements and other multidimen-
sional traits.

Second, we use the proposed approach to quantify the SNP
heritability of the shape of an ensemble of anatomical structures
spanning the human brain in a group of young and healthy
subjects. The shape of caudate, cerebellum, corpus callosum,
hippocampus, third ventricle and putamen exhibited moderate-
to-high heritability (that is, 425%), after controlling for volume.
All of these estimates achieved FDR-corrected significance at
q¼ 0.05. This is in contrast to the volume heritability estimates of
the same set of brain structures on the same sample, none of
which reached FDR-corrected significance. Although our herit-
ability analysis of volume, which was used to benchmark the
shape analysis, may be less informative compared with more
powerful twin studies and large-scale meta-analyses in the
literature, the increased statistical power and the additional
information shape analysis can provide relative to volumetric
analysis demonstrate the usefulness of our methods and under-
score the potential of leveraging multidimensional traits when
analysing data sets with moderate sample sizes.

Using the extended twin data from the HCP, we also replicated
significant shape heritability estimates observed in the GSP
sample. Our HCP estimates were consistently larger than the GSP
estimates, which is theoretically expected because SNP heritability
estimated from the unrelated sample in GSP does not capture
genetic contributions (for example, from rare variants) that are
not tagged by genotyped SNPs, and thus explains a smaller
proportion of the phenotypic variation. However, additional
factors may contribute to the difference between SNP and familial
heritability estimates, which include improper modelling of
shared environment, assortative mating, genetic interaction
(epistasis), suboptimal statistical methods for heritability estima-
tion and differences in sample characteristics such as age range,
ethnic background and environmental exposures35,46–51.
Dissecting the discrepancy in heritability estimates from familial
and unrelated data is an area under active investigation. More
systematic future work is required to fully disentangle this
problem.

A handful of prior neuroimaging studies have explored the
shape of certain brain structures as potential phenotypes in

examining genetic associations. For example, Qiu et al.28 and Shi
et al.29 reported influences of the apolipoprotein E e4 allele on
hippocampal morphology in depressive and Alzheimer’s disease
patients. Variants involved in the regulation of the FKBP5 gene
were recently associated with hippocampal shape30. A meta-
study32 identified a GWAS significant SNP that exerts its effect on
the shape of putamen bilaterally. Prior studies have also estimated
heritability of shape based on familial relatedness. In a recent
study, the heritability of the shape of subcortical and limbic
structures was estimated using data from multigenerational
families with schizophrenia31. In other related work, Mamah
et al.52 and Harms et al.53 revealed shape abnormalities in basal
ganglia structures (caudate, putamen and globus pallidus) and the
thalamus in siblings of schizophrenia patients. An application of
the LBS-based shape descriptor to twin data found increased
shape similarity of brain structures in MZ twin pairs relative to
DZ twins, indicating genetic influences on brain morphology40,
although heritability was not estimated.

However, to date, outside of these notable exceptions, most
structural imaging genetics studies have utilized scalar measure-
ments (for example, volume, thickness and area) as phenotypes.
In the present study, we accounted for potential volume effects in
our shape analyses by normalizing the LBS-based shape
descriptor for size and additionally including the volumetric
measurement of the corresponding structure as a covariate when
estimating heritability. Our results show that shape measure-
ments provide a rich and novel set of phenotypes for exploring
the genetic basis of brain structure, and may identify novel
genetic influences on the brain that are not detectable with
conventional analyses based on the volume of structures.

There are several biological mechanisms that might lead to
shape differences with minimal effect on the overall size of the
structure. These include localized volumetric effects that are
confined to subfields, sub-nuclei or other sub-regions that make
up the structure. Shape analysis may provide significant
information about neurodevelopmental abnormalities, such as
those associated with neuronal migration, synaptogenesis,
synaptic pruning and myelination. Shape measurements might
for example shed light on morphogenetic mechanisms that
involve mechanical tensions along axons, dendrites and glial
processes54. Thus, shape measurements are particularly
promising phenotypes for studying neurodevelopmental
disorders. Neurodegenerative processes and other pathologies,
many of which are known to be genetically influenced, can also
have an impact on neuroanatomical shape by exerting focal
and/or selective insults. For example, in Alzheimer’s disease,
morphological alterations in the hippocampus may only target
certain subfields55.

The shape analysis literature offers an expanding list of
methods to quantify and characterize shape43. A major advantage
of the LBS-based shape descriptor38 employed in this study is that
it is robust to intensity variation across scans and does not require
the nonlinear spatial registration of the object with a population
template, which can be computationally demanding and prone to
error. In this paper, we also present a novel strategy to visualize
the principal mode of shape variation across the population.
For brain structures with significantly heritable shapes, we
demonstrated that the principal mode explains a large portion
of the overall shape variation and is often highly heritable. This
approach can thus shed light on the global genetic influences on
brain structures, and is complementary to studies that rely on
nonlinear group-wise registration to characterize localized genetic
influences on shape variation.

In the present study, in light of the similar shape variation of
bilateral brain structures as observed in Fig. 2 and Supplementary
Fig. 2, and to increase signal-to-noise ratio and statistical power,
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we combined the left and right structures in our shape heritability
analysis. SNP heritability estimates of the shape of bilateral brain
structures using the GSP sample are provided in Supplementary
Table 1. The results indicate that the genetic influences on several
anatomical structures (for example, caudate) may be lateralized,
although with the current sample size we are not able to claim
that the lateral difference is significant. It will be interesting to
investigate the laterality of brain structures from the genetic
perspective when we have a better understanding of the genetic
basis of brain morphology and when a data set with larger sample
size becomes available.

The heritability analysis of multidimensional traits developed
here can be applied to phenotypes other than shape that are
intrinsically multivariate. Another application might involve
heritability or genetic association analyses combining related
traits to obtain more stable effect estimates. For example, it can be
used as an alternative to PC analysis and factor analysis when
investigating the genetic basis of various psychometric or
behavioural traits. Also, voxel- or vertex-level neuroimaging
measurements are often noisy, and analysing these measurements
in homogeneous brain regions in a multivariate manner may
increase the reliability and reproducibility of the results. Finally,
the empirical genetic similarity matrix can be computed with
other SNP grouping strategies (for example, based on genes,
pathways, functional annotations and previous GWAS findings)
to model the genetic influences from a specific genomic region or
partition the heritability of multidimensional traits, as in Yang
et al56.

Methods
Variance component models. We start with a brief review of variance component
models (also known as random effects models) for the heritability analysis of
univariate (scalar) traits, which provide a general statistical framework that can
handle both familial designs and unrelated individuals randomly sampled from the
population. Assuming, for the moment, no covariate needs to be adjusted, and a
trait can be partitioned into the sum of additive genetic effect g, common
(or shared) environment c and unique (subject-specific) environment e,
the variance component model takes the following form:

y ¼ gþ cþ e; g�N 0;s2
AK

� �
; c�N 0; s2

CL
� �

; e�N 0; s2
EI

� �
; ð1Þ

where y¼ [y1, y, yN]? is a vector comprising quantitative traits from N indivi-
duals, s2

A, s2
C and s2

E are the additive genetic variance, common environmental
variance and unique environmental variance, respectively, K is a genetic similarity
matrix, L quantifies shared environment between pairs of individuals and I is an
identity matrix.

In familial studies, K is twice the kinship matrix, K¼ 2F, and indicates expected
additive genetic covariance among individuals. The ijth entry of the kinship matrix,
fij, known as the kinship coefficient, defines genetic relatedness for subjects i and j,
and in general can be derived from pedigree information57,58. L is a matrix that
usually reflects household sharing between pairs of individuals. For example, in the
present study, fij¼ 1/2 for MZ twins and fij¼ 1/4 for DZ twins and full siblings,
and we assume that twin pairs and their non-twin siblings share the same
environment and the corresponding elements in L are 1.

When modelling unrelated individuals randomly sampled from the population,
K is the empirical genetic similarity matrix for each pair of individuals estimated
from genome-wide SNP data, and the corresponding variance component
parameter s2

A is the total additive genetic variance tagged by common SNPs
spanning the genome. We note that in unrelated subject studies s2

A does not
capture contributions (for example, from rare variants) that are not assayed by the
genotyping microarray, and thus needs to be interpreted differently from s2

A in
familial studies, although we use the same notation here for simplicity. In addition,
the common environmental matrix L is often assumed to vanish when analysing
unrelated individuals, in which case equation (1) becomes the classical model used
in genome-wide complex trait analysis33,34.

The heritability of a univariate (scalar) trait is defined as

h2 ¼ s2
A

s2
P

:¼ s2
A

s2
A þ s2

C þ s2
E
; ð2Þ

where s2
P is the phenotypic variance. In familial studies, h2 measures the narrow-

sense heritability of a trait, while in unrelated subject studies, h2 measures additive
heritability attributable to common genetic variants (known as SNP heritability and
often denoted as h2

SNP), and provides a lower bound for the narrow-sense
heritability estimated by familial studies.

Heritability of multidimensional traits. We now consider an M-dimensional trait
Y¼ [y1,?, yM]¼ [yim]N�M. We model Y by a multivariate variance component
model:

Y ¼ GþCþ E; ð3Þ
where G, C and E are N�M matrices, and represent additive genetic effects,
common environmental factors and unique environmental factors, respectively.
We have the following distributional assumptions:

vec Gð Þ�N 0;�A � Kð Þ; vec Cð Þ�N 0;�C � Lð Þ;
vec Eð Þ�N 0;�E � Ið Þ; ð4Þ

where vec( � ) is the matrix vectorization operator that converts a matrix into a
vector by stacking its columns, � is the Kronecker product of matrices,
�A ¼ sArs½ �M�M is the genetic covariance matrix, whose rsth element sArs

is the genetic covariance between yr and ys, �C ¼ sCrs½ �M�M is the common
environmental covariance matrix, and �E ¼ sErs½ �M�M is the unique environ-
mental covariance matrix. The distributional assumptions in equation (4) indicate
that both the genetic effects and environmental factors can be correlated across
trait dimensions. When the trait is a scalar, the multivariate model (3) degenerates
to the univariate model specified in equation (1). Analogous to the discussion
above, K is derived from pedigree information in familial studies and empirically
estimated from genome-wide SNP data in unrelated subject studies. As a result,
SA denotes the genetic covariance due to common SNPs when analysing unrelated
subjects.

We define the heritability of a multidimensional trait as

h2 ¼ tr �A½ �
tr �P½ �

:¼ tr �A½ �
tr �A½ � þ tr �C½ � þ tr �E½ �

; ð5Þ

where �P ¼ sPrs½ �M�M is the phenotypic covariance matrix and tr[ � ] is the trace
operator of a matrix. This definition measures the proportion of the total
phenotypic variance tr[SP] that can be explained by the total additive genetic
variance tr[SA], and yields a heritability measure that is bounded between 0 and 1.
When the trait is univariate, SA, SC and SE become scalars, and equation (5)
reduces to the classical definition of heritability in equation (2). We use h2

SNP
in place of h2 in unrelated subject studies to emphasize that it only captures
genetic influences due to common genetic variants and is a lower bound for the
narrow-sense heritability estimated using familial designs.

Properties of multidimensional heritability. Our definition of heritability is
invariant to rotations of the data. For a linear transformation T applied to the trait
dimensions in model (3), that is,

YT ¼ GT þCT þET; ð6Þ
using the properties of vectorization and the Kronecker product, the covariance
structure of the transformed trait YT can be computed as follows:

cov vec YTð Þ½ �
¼ cov vec GTð Þ½ � þ cov vec CTð Þ½ � þ cov vec ETð Þ½ �
¼ cov T> � I

� �
vec Gð Þ

� �
þ cov T> � I

� �
vec Cð Þ

� �
þ cov T> � I

� �
vec Eð Þ

� �
¼ T> � I
� �

�A � Kð Þ T � Ið Þþ T> � I
� �

�C � Lð Þ T � Ið Þþ T> � I
� �

�E � Ið Þ T � Ið Þ
¼ T>�AT
� �

� K þ T>�CT
� �

� Lþ T>�ET
� �

� I:

ð7Þ
Therefore, the transformed heritability is

h2
T ¼

tr T>�AT
� �

tr T>�AT
� �

þ tr T>�CT
� �

þ tr T>�ET
� � ¼ tr �A TT>

� �� �
tr �P TT>

� �� � : ð8Þ

When T is an orthogonal matrix satisfying TT?¼T?T¼ I, we have h2
T¼ h2.

The definition of heritability in equation (5) can also been written as

h2 ¼ tr �A½ �
tr �P½ �

¼

P
m
sAmmP

m
sPmm

¼
X

m

gmh2
m; ð9Þ

where gm ¼ sPmm=
P

m sPmm with
P

mgm¼ 1, and h2
m ¼ sGmm=sPmm is the

heritability of the mth component of the trait. Therefore, our definition of the
heritability of a multidimensional trait is essentially a weighted average of the
heritability of its individual components.

A moment-matching estimator for unrelated subject studies. The model (3)
can in principle be fitted using likelihood-based methods. However, this can be
computationally expensive when the dimension of the trait is moderate. Here we
derive an alternative moment-matching estimator for unrelated subject studies
where the common environmental matrix L vanishes. Specifically, the multivariate
model Y¼GþE and its distributional assumptions vec Gð Þ�N 0;�A � Kð Þ and
vec Eð Þ�N 0;�E � Ið Þ lead to the following relationship:

cov yr ; ys

� �
¼ sArs K þ sErs I; 1 � r; s � M: ð10Þ

Therefore, an unbiased estimator of sArs and sErs can be obtained by regressing
yry>s , the empirical estimate of the phenotypic covariance matrix cov[yr, ys], onto
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the empirical genetic similarity matrix K and identity matrix I. In particular, we
consider the following multiple regression problem:

vec yry>s
� �

¼ sArs vec Kð Þþ sErs vec Ið Þþ Ers; ð11Þ

where Ers is the residual of this regression. This approach is essentially the
Haseman–Elston regression for the classical heritability analysis59,60, and has been
extended recently to handle various study designs including case–control studies,
and more generally termed as phenotype correlation–genetic correlation
regression35. The ordinary least squares estimator of the multiple regression
problem (11) satisfies the linear system:

tr K2½ � tr K½ �
tr K½ � tr I½ �

� �
sArs

sErs

� �
¼ y>r Kys

y>r ys

� �
; ð12Þ

and can be explicitly written as

ŝArs ¼ y>r NK � tr K½ �Ið Þys
Ntr K2½ � � tr2 K½ � :¼ 1

vK
y>r K � tIð Þys;

ŝErs ¼ y>r tr K2½ �I� tr K½ �Kð Þys
Ntr K2½ � � tr2 K½ � :¼ 1

vK
y>r kI� tKð Þys;

ð13Þ

where we have defined t¼ tr[K]/N, k¼ tr[K2]/N and vK¼ tr[K2]� tr2[K]/
N¼N(k� t2). Therefore, it can be seen that unbiased estimates of the genetic and
environmental covariance matrices are as follows:

�̂A ¼
1

vK
Y> K � tIð ÞY; �̂E ¼

1
vK

Y> kI� tKð ÞY: ð14Þ

Let �̂P ¼ �̂A þ �̂E, the SNP heritability of a multidimensional trait can then be
estimated as

ĥ2
SNP ¼

tr �̂A
� �

tr �̂P
� � ¼ tr �̂A

� �
tr �̂A
� �

þ tr �̂E
� � : ð15Þ

For scalar traits, equation (15) degenerates to the classical Haseman–Elston
regression estimator.

Sampling variance of the point estimator. We now derive the variance of ĥ2
SNP.

For notational simplicity, we denote QA¼ (K� tI)/vK, QE¼ (kI� tK)/vK, and also
tA ¼ tr½�̂A� ¼ tr½Y>QAY�, tE ¼ tr½�̂E� ¼ tr½Y>QEY �, tP¼ tAþ tE. Let t¼ (tA, tE)?

and define f(t)¼ tA/(tAþ tE)¼ tA/tP. Using a Taylor expansion, we can approx-
imate the variance of the function f as follows:

var ĥ2
SNP

h i
¼ var f tð Þ½ � 	 @f tð Þ

@t
cov t½ � @f tð Þ

@t>
; ð16Þ

where

@f tð Þ
@t
¼ @f tð Þ

@tA
;
@f tð Þ
@tE

� 	
¼ tE

t2
P
;
� tA

t2
P

� 	
: ð17Þ

To compute cov[t], we define Vrs¼ cov[yr, ys]¼sArs Kþ sErs I, and notice that for
any symmetric matrices Qa and Qb,

cov tr Y>QaY
� �

; tr Y>QbY
� �
 �

¼
PM

r;s¼1 cov y>r Qayr ; y
>
s Qbys


 �
¼ 2

PM
r;s¼1 tr QaVrsQbVrs

� �
:

ð18Þ

Therefore,

cov t½ � ¼ 2
XM

r;s¼1

tr QAVrsQAVrs½ � tr QAVrsQEVrs½ �
tr QEVrsQAVrs½ � tr QEVrsQEVrs½ �

� �
: ð19Þ

Equation (19) can be computationally expensive for a moderate or large M.
We approximate equation (19) using two assumptions that are often made when
estimating the sampling variance of the heritability estimator in the study of
unrelated individuals61: (1) the off-diagonal elements in the empirical genetic
similarity matrix K are small, such that KEI and Vrs¼sArs Kþ sErs IEsArs I
þsErs I¼sPrs I; and (2) the phenotypic covariance SP is known or can be estimated
with very high precision. Using assumption (1), the covariance of t can be
simplified as follows:

cov t½ � 	 2
XM

r;s¼1
s2

Prs

tr Q2
A

� �
tr QAQE½ �

tr QEQA½ � tr Q2
E

� �
" #

¼ 2tr �2
P

� � tr Q2
A

� �
tr QAQE½ �

tr QEQA½ � tr Q2
E

� �
" #

¼ 2tr �2
P

� �
vK

1 � t

� t k

� �
	 2tr �2

P

� �
vK

1 � 1

� 1 1

� �
:

ð20Þ

Therefore,

var ĥ2
SNP

h i
¼ var f tð Þ½ � 	 @f tð Þ

@t cov t½ � @f tð Þ
@t>

	 2tr �2
P½ �

vK t4
P
� tE; � tAð Þ 1 � 1

� 1 1

� �
tE

� tA

� �
¼ 2tr �2

P½ �
vK t4

P
tA þ tEð Þ2¼ 2tr �2

P½ �
vK t2

P
¼ 2

vK
� tr �2

P½ �
tr2 �̂P½ �

	 2
vK
� tr �̂

2
P

� �
tr2 �̂P½ � ;

ð21Þ

where in the last approximation we have used assumption (2) and replaced SP with
its empirical estimate �̂P ¼ �̂A þ �̂E. We note that given the empirical genetic
similarity matrix K, the estimator (21) only depends on the sample size and the
phenotypic covariance structure.

For scalar traits, tr½�̂2
P� ¼ tr2 �̂P

� �
, and the estimator (21) degenerates to

var½ĥ2
SNP� 	 2=vK, which coincides with existing results in the literature61. In

general, the covariance matrix �̂P is non-negative definite. Let m1 
 m2 
 � � � 

mM 
 0 denote its eigenvalues, we have

tr �̂
2
P

h i
tr2 �̂P
� � ¼ PM

i¼1 m
2
iPM

i¼1 mi

� �2 � 1: ð22Þ

This inequality becomes an equality if and only if rank½�̂P� ¼ 1, that is, the M traits
are perfectly correlated. Therefore, combining multiple traits reduces the variability
of heritability estimates relative to analysing each trait individually.

Statistic inference. To measure the significance of a heritability estimate,
a P value can be computed by conducting a Wald test. Since the null hypothesis,
H0 : h2

SNP ¼ 0, lies on the boundary of the parameter space, the Wald test statistic
is distributed as

ĥ4
SNP

var½ĥ2
SNP�
� 1

2
w2

0 þ
1
2
w2

1; ð23Þ

a half–half mixture of w2
0, a w2 distribution with all probability mass at zero,

and w2
1, a w2 distribution with 1 degrees of freedom62.

Alternatively, permutation inference can be used by shuffling the rows
and columns of the empirical genetic similarity matrix K. For each permutation
r¼ 1, 2, ?, Nperm, we record the heritability estimate ĥ2

SNP rð Þ computed from the
permuted data. Then, for an observed heritability estimate ĥ2

SNP rð Þ, the
permutation P value can be computed as63

Pperm ¼
# ĥ2

SNP rð Þ 
 ĥ2
SNP

n o
Nperm

: ð24Þ

Heritability estimation in familial studies. A moment-matching estimator can
be analogously derived for familial data analysis, but has low statistical efficiency
due to the strong correlation between the genetic similarity matrix K and the
common environmental matrix L. Therefore, when analysing the HCP data, we
estimate the heritability of each individual component of a multidimensional trait
using the restricted maximum likelihood algorithm and combine these estimates
using a variance-weighted average as derived in equation (9).

To estimate the variance of the heritability estimate of a multidimensional trait,
we employ a block bootstrapping procedure whereby families are randomly
resampled with replacement to produce a bootstrap sample and the heritability is
re-estimated. This procedure is repeated for Nboots times (Nboots¼ 1,000 in the
present study) to yield bootstrap heritability estimates ĥ2 bð Þ, b¼ 1, 2,?, Nboots.
The variance of the heritability estimate is then estimated as64

var ĥ2
h i

¼ 1
Nboots � 1

XNboots

b¼1

ĥ2 bð Þ� ĥ2 �ð Þ
� 2

; ð25Þ

where ĥ2 �ð Þ ¼
PNboots

b¼1 ĥ2 bð Þ=Nboots.

Modelling covariates. When covariates or nuisance variables need to be adjusted,
model (3) becomes a multivariate linear mixed effects model:

Y ¼ XBþGþCþE; ð26Þ
with the distributional assumptions vec Gð Þ�N 0;�A � Kð Þ, vec Cð Þ�N 0;�C � Lð Þ
and vec Eð Þ�N 0;�E � Ið Þ, where X is an N� q matrix of covariates, and B is a
q�M matrix of fixed effects. We employ a strategy described in ref. 65 to removes
the covariate matrix from the model. Specifically, there exists an N� (N� q)
matrix U, satisfying U?U¼ I(N� q)� (N� q), UU?¼ P0, and U?X¼ 0,
where P0¼ I�X(X?X)� 1X?. The matrix U? projects the data from the N
dimensional space onto an N� q dimensional subspace:

~Y :¼ U>Y ¼ U>GþU>CþU>E :¼ ~Gþ ~Cþ ~E; ð27Þ

where vec ~G
� �
�N 0;�A � U>KU

� �� �
, vec ~C

� �
�N 0;�C � U>LU

� �� �
and

vec ~E
� �
�N 0;�E � Ið Þ. The transformed model is the same as model (3) and thus

all estimation and inferential methods developed above can be applied.
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The Brain Genomics Superstruct Project. The Harvard/MGH Brain GSP is a
neuroimaging and genetics study of brain and behavioural phenotypes. More than
3,500 native English-speaking adults with normal or corrected-to-normal vision
were recruited from Harvard University, MGH and the surrounding Boston
communities. To avoid spurious effects resulting from population stratification,
we restricted our analyses to 1,320 young adults (18–35 years) of non-Hispanic
European ancestry with no history of psychiatric illnesses or major health
problems (age, 21.54±3.19 years; female, 53.18%; right-handedness, 91.74%).
All participants provided written informed consent in accordance with guidelines
set by the Partners Health Care Institutional Review Board or the Harvard
University Committee on the Use of Human Subjects in Research. For further
details about the recruitment process, participants and imaging data acquisition, we
refer the reader to Holmes et al.36,37.

The Human Connectome Project. The HCP collects imaging, behavioural and
demographic data from a large population of healthy adults and aims to shed
light on anatomical and functional connectivity within the healthy human
brain. We used preprocessed structural MRI data from the WU-Minn HCP
consortium and selected subjects that have a similar age range (22–35 years) and
ancestry (non-Hispanic/Latino European) as the GSP sample. The 590 subjects we
analysed (age, 29.21±3.45 years; female 55.93%) come from 249 families and
comprise 72 MZ twin pairs, 69 DZ twin pairs, 253 full siblings of twins and 55
singletons (single birth individuals without siblings). Further details about the
recruitment process, imaging data acquisition and MRI data preprocessing can be
found in41,66.

Genetic analysis. We used PLINK 1.90 (https://www.cog-genomics.org/plink2)67,
to preprocess the GSP genome-wide SNP data. Major procedures included sex
discrepancy check, removing population outliers, spuriously related subjects and
subjects with low genotype call rate (o97%). Individual markers that contained an
ambiguous strand assignment and that did not satisfy the following quality control
criteria were excluded from the analyses: genotype call rate 
 97 % , minor allele
frequency 
 1 % and Hardy–Weinberg equilibrium P 
 1�10� 6. A total of
574,632 SNPs remained for analysis after quality control. We performed a
multidimensional scaling analysis to ensure that no clear population stratification
and outliers exist in the sample (Supplementary Fig. 3). The genetic similarity
matrix was estimated from all genotyped autosomal SNPs.

LBS-based shape descriptor. The intrinsic geometry of any 2D or three-
dimensional manifold can be characterized by its LBS38,39, which is obtained by
solving the following Laplacian eigenvalue problem (or Helmoltz equation):

Df ¼ � lf ; ð28Þ
where D is the Laplace–Beltrami operator, a generalization of the Laplacian in the
Euclidean space to manifolds, f is a real-valued eigenfunction defined on a
Riemannian manifold and l is the corresponding eigenvalue. Equation (28)
can be solved by the finite element method, yielding a diverging sequence of
eigenvalues 0 � l1 � l2 � � � � " þ1. An implementation of the algorithm is
freely available (http://reuter.mit.edu/software/shapedna). The first M eigenvalues
of the LBS can be used to define a description of the object, which provides a
numerical fingerprint or signature of the shape, and is thus known as (length-M)
‘Shape-DNA’.

Shape analysis pipeline. We used FreeSurfer (http://freesurfer.net)68, version
4.5.0, a freely available, widely used, and extensively validated brain MRI analysis
software package, to process the GSP structural brain MRI scans and label
subcortical brain structures. HCP MRI scans were preprocessed by the WU-Minn
HCP consortium, and the label files of subcortical structures have been made
available41,66. Surface meshes of brain structures were obtained via marching cubes
from subcortical segmentations. We created triangular meshes on the boundary
surfaces for 20 structures. We then geometrically smoothed these meshes and
solved the eigenvalue problem of the 2D Laplace–Beltrami operator on each of
these representations, yielding the LBS-based shape descriptor40. A python
implementation of this pipeline is freely available (http://reuter.mit.edu/software/
brainprint).

Heritability analyses of neuroanatomical shape. We treated the length-M
LBS-based shape descriptor of each structure as a multidimensional trait and
quantified its heritability. In the case of a closed manifold without a boundary,
the first eigenvalue is always zero and was thus removed from analysis.
Theoretical and empirical evidence have confirmed that the eigenvalues grow
linearly and their variance grows quadratically38,40. To avoid that higher
eigenvalues dominate the phenotypic covariance, we re-weighted the mth
eigenvalue for the ith subject as38:

~li;m ¼ li;m=m; i ¼ 1; 2; � � � ;N; m ¼ 1; 2; � � � ;M: ð29Þ

This ensures a balanced contribution of lower and higher eigenvalues on the
phenotypic covariance. The LBS also depends on the overall size of the structure.

To measure the genetic influences on the shape that are complementary to volume,
we further scaled the eigenvalues as:

~~li;m ¼ ~li;m � V2=3
i ; i ¼ 1; 2; � � � ;N; m ¼ 1; 2; � � � ;M; ð30Þ

where Vi is the volume of the structure for the ith subject. Since scaling the
eigenvalues by a factor Z results in scaling the underlying manifold by a factor
Z� 1/2 (ref. 38) , the normalization (30) ensures that the volumes of the structure
are identical across individuals.

We combined the left and right structures in our heritability analyses by
averaging their volumetric measurements and concatenating their re-weighted and
scaled shape descriptors into one multidimensional trait. We included age, gender,
handedness, scanner group, console group and the top 10 PCs of the empirical
genetic similarity matrix as covariates when analysing the GSP sample, and
included age, gender and handedness as covariates when analysing the HCP
sample. To remove potential size effect, we always explicitly included the volume of
the corresponding structure as a covariate in our shape analyses.

The number of eigenvalues incorporated in the LBS-based shape descriptor and
the amount of smoothing applied to the surface mesh are crucial study designs,
which might have an impact on heritability estimates. In particular, incorporating a
very small number of eigenvalues may be insufficient to characterize the shape of a
structure, while very large eigenvalues typically capture fine-scale details, which can
be noise and thus might reduce sensitivity. In this study, we reported results
obtained by incorporating 50 eigenvalues in the shape descriptor and applying
three iterations of geometric smoothing to the surface mesh. We conducted
sensitivity analyses and confirmed that in the present shape analysis the results
were largely robust to different parameter settings (Supplementary Fig. 1).

Visualizing the principal mode of shape variation. We note that, as shown
above, our definition of the heritability of a multidimensional trait is a variance-
weighted average of individual components, and is invariant to the rotation of the
trait vector. Therefore, an equivalent definition of the heritability of a length-M
LBS-based shape descriptor is the variance-weighted average of the heritability of
the first M PCs of the descriptor, because PC analysis is essentially a rotation of the
data. The first PC thus explains the greatest shape variation and has the largest
impact on the overall heritability estimate of the shape.

To visualize shape variation along the first PC of the shape descriptor for a
given structure, we first aligned the structures from all subjects to a template,
fsaverage, which is a population average distributed with FreeSurfer68, using a
seven-parameter (global scaling plus six-parameter rigid body transformation)
registration with linear interpolation. Both individual structures and the template
were represented with binary label maps, where voxels within the corresponding
segmentation label had one and the remainder of the volume had zero values. The
registration algorithm maximized the overlap, measured with the Dice score69,
between the corresponding label maps (the fixed template and moving subject that
was interpolated and thresholded at 0.5). Note that LBS is invariant to the spatial
position and orientation of an object, and we had normalized the shape descriptor
for volume in all the analyses. Thus, this registration has no impact on the results of
our heritability analyses. We then created a sample-specific population average of
the structure by computing a weighted average of the interpolated subject images.
In particular, each subject was associated with a weight equal to a Gaussian kernel
centred around the mean of the first PC and evaluated at the subject’s first PC of
the shape descriptor. The width of the kernel was selected such that 500 shapes
received non-zero weights. The isosurface of the resulting probability map at 0.5
was used to represent the average shape of the structure, and all visualizations were
presented on this surface.

The same Gaussian kernel was used to generate average probability images for
shapes centred at the two extremes (±2 s.d.) of the principal axis. These average
probability images were offset to achieve identical volumes when thresholded at
0.5. The difference of the two extreme shapes was depicted on the sample-specific
population average, by visualizing the difference in the probability values. Blue
indicated that the average shape at � 2 s.d. achieved a higher probability value and
thus was larger in those regions than the average shape at the þ 2 s.d. For red
regions, the opposite was true.

Data availability. The Brain GSP data analysed during the current study are
publicly available at http://neuroinformatics.harvard.edu/gsp/. The HCP data
analysed during the current study are publicly available at http://www.
humanconnectome.org. Other data are available from the corresponding author on
reasonable request.
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