322 research outputs found

    Barriers to adoption of biogenic carbonates in the food, pharmaceutical & supplement sectors

    Get PDF
    There is an increasing demand for environmentally sustainable sourcing of ingredients for the food, pharmaceutical and supplements industries. In the case of calcium carbonate (E170) as by-products from the egg and shellfish processing industries these have the potential to be sustainably sourced. In addition to their green credentials, biogenic carbonates have intrinsic benefits in terms of their chemical composition, such as a low heavy metal burden. However, their biogenic origin can potentially lead to manufacturing issues such as higher levels of co-mineralising components and the organic templates of their natural production. This contribution identifies the regulatory barriers to the adoption of biogenic eggshell calcium carbonate by assessing materials from biological sources along with commercial precipitated and ground carbonates against current regulatory standards

    Synchronous fluorescence spectrofluorimetric method for the simultaneous determination of metoprolol and felodipine in combined pharmaceutical preparation

    Get PDF
    A rapid, simple and sensitive synchronous specrtofluorimetric method has been developed for the simultaneous analysis of binary mixture of metoprolol (MTP) and felodipine (FDP). The method is based upon measurement of the synchronous fluorescence intensity of the two drugs at Δλ of 70 nm in aqueous solution. The different experimental parameters affecting the synchronous fluorescence intensities of the two drugs were carefully studied and optimized. The fluorescence intensity-concentration plots were rectilinear over the ranges of 0.5-10 μg/mL and 0.2-2 μg/mL for MTP and FDP, respectively. The limits of detection were 0.11 and 0.02 μg/mL and quantification limits were 0.32 and 0.06 μg/mL for MTP and FDP, respectively. The proposed method was successfully applied for the determination of the two compounds in their commercial tablets and the results obtained were favorably compared to those obtained with a comparison method

    Derivative spectrophotometric analysis of benzophenone (as an impurity) in phenytoin

    Get PDF
    Three simple and rapid spectrophotometric methods were developed for detection and trace determination of benzophenone (the main impurity) in phenytoin bulk powder and pharmaceutical formulations. The first method, zero-crossing first derivative spectrophotometry, depends on measuring the first derivative trough values at 257.6 nm for benzophenone. The second method, zero-crossing third derivative spectrophotometry, depends on measuring the third derivative peak values at 263.2 nm. The third method, ratio first derivative spectrophotometry, depends on measuring the peak amplitudes of the first derivative of the ratio spectra (the spectra of benzophenone divided by the spectrum of 5.0 Îźg/mL phenytoin solution) at 272 nm. The calibration graphs were linear over the range of 1-10 Îźg/mL. The detection limits of the first and the third derivative methods were found to be 0.04 Îźg/mL and 0.11 Îźg/mL and the quantitation limits were 0.13 Îźg/mL and 0.34 Îźg/mL, respectively, while for the ratio derivative method, the detection limit was 0.06 Îźg/mL and the quantitation limit was 0.18 Îźg/mL. The proposed methods were applied successfully to the assay of the studied drug in phenytoin bulk powder and certain pharmaceutical preparations. The results were statistically compared to those obtained using a polarographic method and were found to be in good agreement

    Evaluation of surface contamination with cyclophosphamide following simulated hazardous drug preparation activities using two closed-system products

    Get PDF
    Purpose. A preliminary investigation was conducted to evaluate and compare the effectiveness of two closed-system products in preventing contamination of typical pharmacy workplace surfaces with cyclophosphamide during simulated hazardous drug preparation activities in a controlled laboratory setting

    Validated stability indicating liquid chromatographic determination of ebastine in pharmaceuticals after pre column derivatization: Application to tablets and content uniformity testing

    Get PDF
    An accurate, simple, sensitive and selective reversed phase liquid chromatographic method has been developed for the determination of ebastine in its pharmaceutical preparations. The proposed method depends on the complexation ability of the studied drug with Zn2+ ions. Reversed phase chromatography was conducted using an ODS C18 (150 × 4.6 mm id) stainless steel column at ambient temperature with UV-detection at 260 nm. A mobile phase containing 0.025%w/v Zn2+ in a mixture of (acetonitril/methanol; 1/4) and Britton Robinson buffer (65:35, v/v) adjusted to pH 4.2, has been used for the determination of ebastine at a flow rate of 1 ml/min. The calibration curve was rectilinear over the concentration range of 0.3 - 6.0 μg/ml with a detection limit (LOD) of 0.13 μg/ml, and quantification limit (LOQ) of 0.26 μg/ml. The proposed method was successfully applied for the analysis of ebastine in its dosage forms, the obtained results were favorably compared with those obtained by a comparison method. Furthermore, content uniformity testing of the studied pharmaceutical formulations was also conducted. The composition of the complex as well as its stability constant was also investigated. Moreover, the proposed method was found to be a stability indicating one and was utilized to investigate the kinetics of alkaline and ultraviolet induced degradation of the drug. The first-order rate constant and half life of the degradation products were calculated

    Validated stability-indicating spectrofluorimetric methods for the determination of ebastine in pharmaceutical preparations

    Get PDF
    Two sensitive, selective, economic, and validated spectrofluorimetric methods were developed for the determination of ebastine (EBS) in pharmaceutical preparations depending on reaction with its tertiary amino group. Method I involves condensation of the drug with mixed anhydrides (citric and acetic anhydrides) producing a product with intense fluorescence, which was measured at 496 nm after excitation at 388 nm

    Mirror, mirror on the wall: which microbiomes will help heal them all?

    Get PDF
    BACKGROUND: Clinicians have known for centuries that there is substantial variability between patients in their response to medications—some individuals exhibit a miraculous recovery while others fail to respond at all. Still others experience dangerous side effects. The hunt for the factors responsible for this variation has been aided by the ability to sequence the human genome, but this just provides part of the picture. Here, we discuss the emerging field of study focused on the human microbiome and how it may help to better predict drug response and improve the treatment of human disease. DISCUSSION: Various clinical disciplines characterize drug response using either continuous or categorical descriptors that are then correlated to environmental and genetic risk factors. However, these approaches typically ignore the microbiome, which can directly metabolize drugs into downstream metabolites with altered activity, clearance, and/or toxicity. Variations in the ability of each individual’s microbiome to metabolize drugs may be an underappreciated source of differences in clinical response. Complementary studies in humans and animal models are necessary to elucidate the mechanisms responsible and to test the feasibility of identifying microbiome-based biomarkers of treatment outcomes. SUMMARY: We propose that the predictive power of genetic testing could be improved by taking a more comprehensive view of human genetics that encompasses our human and microbial genomes. Furthermore, unlike the human genome, the microbiome is rapidly altered by diet, pharmaceuticals, and other interventions, providing the potential to improve patient care by re-shaping our associated microbial communities
    • …
    corecore