155 research outputs found

    Logarithmic behavior of degradation dynamics in metal--oxide semiconductor devices

    Full text link
    In this paper the authors describe a theoretical simple statistical modelling of relaxation process in metal-oxide semiconductor devices that governs its degradation. Basically, starting from an initial state where a given number of traps are occupied, the dynamics of the relaxation process is measured calculating the density of occupied traps and its fluctuations (second moment) as function of time. Our theoretical results show a universal logarithmic law for the density of occupied traps ˉϕ(T,EF)(A+Blnt)\bar{} \sim \phi (T,E_{F}) (A+B \ln t), i.e., the degradation is logarithmic and its amplitude depends on the temperature and Fermi Level of device. Our approach reduces the work to the averages determined by simple binomial sums that are corroborated by our Monte Carlo simulations and by experimental results from literature, which bear in mind enlightening elucidations about the physics of degradation of semiconductor devices of our modern life

    The fundamental parameters of the roAp star γ\gamma Equulei

    Full text link
    Physical processes working in the stellar interiors as well as the evolution of stars depend on some fundamental stellar properties, such as mass, radius, luminosity, and chemical abundances. A classical way to test stellar interior models is to compare the predicted and observed location of a star on theoretical evolutionary tracks in a H-R diagram. This requires the best possible determinations of stellar mass, radius, luminosity and abundances. To derive its fundamental parameters, we observed the well-known rapidly oscillating Ap star, γ\gamma Equ, using the visible spectro-interferometer VEGA installed on the optical CHARA array. We computed the calibrated squared visibility and derived the limb-darkened diameter. We used the whole energy flux distribution, the parallax and this angular diameter to determine the luminosity and the effective temperature of the star. We obtained a limb-darkened angular diameter of 0.564~±\pm~0.017~mas and deduced a radius of RR~=~2.20~±\pm~0.12~R{\rm R_{\odot}}. Without considering the multiple nature of the system, we derived a bolometric flux of (3.12±0.21)×107(3.12\pm 0.21)\times 10^{-7} erg~cm2^{-2}~s1^{-1} and an effective temperature of 7364~±\pm~235~K, which is below the effective temperature that has been previously determined. Under the same conditions we found a luminosity of LL~=~12.8~±\pm~1.4~L{\rm L_{\odot}}. When the contribution of the closest companion to the bolometric flux is considered, we found that the effective temperature and luminosity of the primary star can be, respectively, up to \sim~100~K and up to \sim~0.8~L_\odot smaller than the values mentioned above.These new values of the radius and effective temperature should bring further constraints on the asteroseismic modelling of the star.Comment: Accepted by A&

    Nuclear break-up of 11Be

    Full text link
    The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be from the GANIL facility on a 48Ti target by measuring correlations between the 10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to the emission of a neutron at large angle in the laboratory frame is identified with the towing mode through its characteristic n-fragment correlation. The experimental spectra are compared with a model where the time dependent Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A good agreement is found between experiment and theory for the shapes of neutron experimental energies and angular distributions. The spectroscopic factor of the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission from the 1p and 1d orbitals is also studied

    Time, spatial, and spectral resolution of the Halpha line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer

    Get PDF
    BA-type supergiants are amongst the most optically-bright stars. They are observable in extragalactic environments, hence potential accurate distance indicators. Emission activity in the Halpha line of the BA supergiants Rigel (B8Ia) and Deneb (A2Ia) is indicative of presence of localized time-dependent mass ejections. Here, we employ optical interferometry to study the Halpha line-formation region in these stellar environments. High spatial- (0.001 arcsec) and spectral- (R=30 000) resolution observations of Halpha were obtained with the visible recombiner VEGA installed on the CHARA interferometer, using the S1S2 array-baseline (34m). Six independent observations were done on Deneb over the years 2008 and 2009, and two on Rigel in 2009. We analyze this dataset with the 1D non-LTE radiative-transfer code CMFGEN, and assess the impact of the wind on the visible and near-IR interferometric signatures, using both Balmer-line and continuum photons. We observe a visibility decrease in Halpha for both Rigel and Deneb, suggesting that the line-formation region is extended (1.5-1.75 R*). We observe a significant visibility decrease for Deneb in the SiII6371 line. We witness time variations in the differential phase for Deneb, implying an inhomogeneous and unsteady circumstellar environment, while no such variability is seen in differential visibilities. Radiative-transfer modeling of Deneb, with allowance for stellar-wind mass loss, accounts fairly well for the observed decrease in the Halpha visibility. Based on the observed differential visibilities, we estimate that the mass-loss rate of Deneb has changed by less than 5%

    The Aquila prestellar core population revealed by Herschel

    Get PDF
    The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg^2 area of the field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys

    Evidence of triggered star formation in G327.3-0.6. Dust-continuum mapping of an infrared dark cloud with P-ArT\'eMiS

    Get PDF
    Aims. Expanding HII regions and propagating shocks are common in the environment of young high-mass star-forming complexes. They can compress a pre-existing molecular cloud and trigger the formation of dense cores. We investigate whether these phenomena can explain the formation of high-mass protostars within an infrared dark cloud located at the position of G327.3-0.6 in the Galactic plane, in between two large infrared bubbles and two HII regions. Methods: The region of G327.3-0.6 was imaged at 450 ? m with the CEA P-ArT\'eMiS bolometer array on the Atacama Pathfinder EXperiment telescope in Chile. APEX/LABOCA and APEX-2A, and Spitzer/IRAC and MIPS archives data were used in this study. Results: Ten massive cores were detected in the P-ArT\'eMiS image, embedded within the infrared dark cloud seen in absorption at both 8 and 24 ?m. Their luminosities and masses indicate that they form high-mass stars. The kinematical study of the region suggests that the infrared bubbles expand toward the infrared dark cloud. Conclusions: Under the influence of expanding bubbles, star formation occurs in the infrared dark areas at the border of HII regions and infrared bubbles.Comment: 4 page

    First AMBER/VLTI observations of hot massive stars

    Get PDF
    AMBER is the first near infrared focal instrument of the VLTI. It combines three telescopes and produces spectrally resolved interferometric measures. This paper discusses some preliminary results of the first scientific observations of AMBER with three Unit Telescopes at medium (1500) and high (12000) spectral resolution. We derive a first set of constraints on the structure of the circumstellar material around the Wolf Rayet Gamma2 Velorum and the LBV Eta Carinae

    Temperature and voltage dependences of the capture and emission times of individual traps in high-k dielectrics

    Get PDF
    a b s t r a c t Quantized threshold voltage (VTH) relaxation transients are observed in nano-scaled field effect transistors (FETs) after bias temperature stress. The abrupt steps are due to trapping/detrapping of individual defects in the gate oxide and indicate their characteristic emission/capture times. Individual traps are studied in n-channel SiO 2 /HfSiO FETs after positive gate stress to complement previous studies performed on SiO(N). Similarly to single SiO(N) traps, strong thermal and bias dependences of the emission and capture times are demonstrated. The high-k traps have a higher density but a reduced impact on VTH due to their separation from the channel

    The Hα\alpha line forming region of AB Aur spatially resolved at sub-AU with the VEGA/CHARA spectro-interferometer

    Full text link
    A crucial issue in star formation is to understand the physical mechanism by which mass is accreted onto and ejected by a young star. The visible spectrometer VEGA on the CHARA array can be an efficient means of probing the structure and the kinematics of the hot circumstellar gas at sub-AU. For the first time, we observed the Herbig Ae star AB Aur in the Hα\alpha emission line, using the VEGA low spectral resolution on two baselines of the array. We computed and calibrated the spectral visibilities between 610 nm and 700 nm. To simultaneously reproduce the line profile and the visibility, we used a 1-D radiative transfer code that calculates level populations for hydrogen atoms in a spherical geometry and synthetic spectro-interferometric observables. We clearly resolved AB Aur in the Hα\alpha line and in a part of the continuum, even at the smallest baseline of 34 m. The small P-Cygni absorption feature is indicative of an outflow but could not be explained by a spherical stellar wind model. Instead, it favors a magneto-centrifugal X-disk or disk-wind geometry. The fit of the spectral visibilities could not be accounted for by a wind alone, so we considered a brightness asymmetry possibly caused by large-scale nebulosity or by the known spiral structures, inducing a visibility modulation around Hα\alpha. Thanks to the unique capabilities of VEGA, we managed to simultaneously record for the first time a spectrum at a resolution of 1700 and spectral visibilities in the visible range on a target as faint as mVm_{V} = 7.1. It was possible to rule out a spherical geometry for the wind of AB Aur and provide realistic solutions to account for the Hα\alpha emission compatible with magneto-centrifugal acceleration. The study illustrates the advantages of optical interferometry and motivates observations of other bright young stars to shed light on the accretion/ejection processes

    The Pipe Nebula as seen with Herschel: Formation of filamentary structures by large-scale compression ?

    Get PDF
    A growing body of evidence indicates that the formation of filaments in interstellar clouds is a key component of the star formation process. In this paper, we present new Herschel PACS and SPIRE observations of the B59 and Stem regions in the Pipe Nebula complex, revealing a rich, organized network of filaments. The asymmetric column density profiles observed for several filaments, along with the bow-like edge of B59, indicates that the Pipe Nebula is being compressed from its western side, most likely by the winds from the nearby Sco OB2 association. We suggest that this compressive flow has contributed to the formation of some of the observed filamentary structures. In B59, the only region of the entire Pipe complex showing star formation activity, the same compressive flow has likely enhanced the initial column density of the clump, allowing it to become globally gravitationally unstable. Although more speculative, we propose that gravity has also been responsible for shaping the converging filamentary pattern observed in B59. While the question of the relative impact of large-scale compression and gravity remains open in B59, large-scale compression appears to be a plausible mechanism for the initial formation of filamentary structures in the rest of the complexComment: 9 pages, 9 figures, accepted for publication in A&
    corecore