163 research outputs found

    First Assessment of Mountains on Northwestern Ellesmere Island, Nunavut, as Potential Astronomical Observing Sites

    Full text link
    Ellesmere Island, at the most northerly tip of Canada, possesses the highest mountain peaks within 10 degrees of the pole. The highest is 2616 m, with many summits over 1000 m, high enough to place them above a stable low-elevation thermal inversion that persists through winter darkness. Our group has studied four mountains along the northwestern coast which have the additional benefit of smooth onshore airflow from the ice-locked Arctic Ocean. We deployed small robotic site testing stations at three sites, the highest of which is over 1600 m and within 8 degrees of the pole. Basic weather and sky clarity data for over three years beginning in 2006 are presented here, and compared with available nearby sea-level data and one manned mid-elevation site. Our results point to coastal mountain sites experiencing good weather: low median wind speed, high clear-sky fraction and the expectation of excellent seeing. Some practical aspects of access to these remote locations and operation and maintenance of equipment there are also discussed.Comment: 21 pages, 2 tables, 15 figures; accepted for publication in PAS

    Detecting the orientation of magnetic fields in galaxy clusters

    Full text link
    Clusters of galaxies, filled with hot magnetized plasma, are the largest bound objects in existence and an important touchstone in understanding the formation of structures in our Universe. In such clusters, thermal conduction follows field lines, so magnetic fields strongly shape the cluster's thermal history; that some have not since cooled and collapsed is a mystery. In a seemingly unrelated puzzle, recent observations of Virgo cluster spiral galaxies imply ridges of strong, coherent magnetic fields offset from their centre. Here we demonstrate, using three-dimensional magnetohydrodynamical simulations, that such ridges are easily explained by galaxies sweeping up field lines as they orbit inside the cluster. This magnetic drape is then lit up with cosmic rays from the galaxies' stars, generating coherent polarized emission at the galaxies' leading edges. This immediately presents a technique for probing local orientations and characteristic length scales of cluster magnetic fields. The first application of this technique, mapping the field of the Virgo cluster, gives a startling result: outside a central region, the magnetic field is preferentially oriented radially as predicted by the magnetothermal instability. Our results strongly suggest a mechanism for maintaining some clusters in a 'non-cooling-core' state.Comment: 48 pages, 21 figures, revised version to match published article in Nature Physics, high-resolution version available at http://www.cita.utoronto.ca/~pfrommer/Publications/pfrommer-dursi.pd

    Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations

    Full text link
    We study the possibility for detecting gamma-ray emission from galaxy clusters. We consider 1) leptophilic models of dark matter (DM) annihilation that include a Sommerfeld enhancement (SFE), 2) different representative benchmark models of supersymmetric DM, and 3) cosmic ray (CR) induced pion decay. Among all clusters/groups of a flux-limited X-ray sample, we predict Virgo, Fornax and M49 to be the brightest DM sources and find a particularly low CR-induced background for Fornax. For a minimum substructure mass given by the DM free-streaming scale, cluster halos maximize the substructure boost for which we find a factor above 1000. Since regions around the virial radius dominate the annihilation flux of substructures, the resulting surface brightness profiles are almost flat. This makes it very challenging to detect this flux with imaging atmospheric Cherenkov telescopes. Assuming cold dark matter with a substructure mass distribution down to an Earth mass and using extended Fermi upper limits, we rule out the leptophilic models in their present form in 28 clusters, and limit the boost from SFE in M49 and Fornax to be < 5. This corresponds to a limit on SFE in the Milky Way of < 3, which is too small to account for the increasing positron fraction with energy as seen by PAMELA and challenges the DM interpretation. Alternatively, if SFE is realized in Nature, this would imply a limiting substructure mass of M_lim > 10^4 M_sol - a problem for structure formation. Using individual cluster observations, it will be challenging for Fermi to constrain our selection of DM benchmark models without SFE. The Fermi upper limits are, however, closing in on our predictions for the CR flux using an analytic model based on cosmological hydrodynamical cluster simulations. We limit the CR-to-thermal pressure in nearby bright galaxy clusters of the Fermi sample to < 10% and in Norma and Coma to < 3%.Comment: 43 pages, 23 figures, 10 tables. Accepted for publication in Phys. Rev. D: streamlined paper, added a paragraph about detectability to introduction, few references added, and few typos correcte

    Concept for Predicting Vibrations in Machine Tools Using Machine Learning

    Get PDF
    Vibrations have a significant influence on quality and costs in metal cutting processes. Existing methods for predicting vibrations in machine tools enable an informed choice of process settings, however they rely on costly equipment and specialised staff. Therefore, this contribution proposes to reduce the modelling effort required by using machine learning based on data gathered during production. The approach relies on two sub-models, representing the machine structure and machining process respectively. A method is proposed for initialising and updating the models in production

    Comparative analysis of the diffuse radio emission in the galaxy clusters A1835, A2029, and Ophiuchus

    Full text link
    We recently performed a study of a sample of relaxed, cooling core galaxy clusters with deep Very Large Array observations at 1.4 GHz. We find that in the central regions of A1835, A2029, and Ophiuchus the dominant radio galaxy is surrounded by a diffuse low-brightness radio emission that takes the form of a mini-halo. Here we present the results of the analysis of the extended diffuse radio emission in these mini-halos. In order to investigate the morphological properties of the diffuse radio emission in clusters of galaxies we propose to fit their azimuthally averaged brightness profile with an exponential, obtaining the central brightness and the e-folding radius from which the radio emissivity can be calculated. We investigate the radio properties of the mini-halos in A1835, A2029, and Ophiuchus in comparison with the radio properties of a representative sample of mini-halos and halos already known in the literature. We find that radio halos can have quite different length-scales but their emissivity is remarkably similar from one halo to the other. In contrast, mini-halos span a wide range of radio emissivity. Some of them, like the Perseus mini-halos, are characterized by a radio emissivity which is more than 100 times greater than that of radio halos. On the other hand, the new mini-halos in cooling core clusters analyzed in this work, namely A2029, Ophiuchus, and A1835, have a radio emissivity which is much more typical of halos in merging clusters rather than similar to that of the other mini-halos previously known.Comment: 17 pages, 11 figures, A&A in press. For a version with high quality figures, see http://erg.ca.astro.it/preprints/mini_halo_2

    A low-frequency radio halo associated with a cluster of galaxies

    Full text link
    Clusters of galaxies are the largest gravitationally bound objects in the Universe, containing about 10^15 solar masses of hot (10^8 K) gas, galaxies and dark matter in a typical volume of about 10 Mpc^3. Magnetic fields and relativistic particles are mixed with the gas as revealed by giant radio haloes, which arise from diffuse, megaparsec-scale synchrotron radiation at cluster center. Radio haloes require that the emitting electrons are accelerated in situ (by turbulence), or are injected (as secondary particles) by proton collisions into the intergalactic medium. They are found only in a fraction of massive clusters that have complex dynamics, which suggests a connection between these mechanisms and cluster mergers. Here we report a radio halo at low frequencies associated with the merging cluster Abell 521. This halo has an extremely steep radio spectrum, which implies a high frequency cut-off; this makes the halo difficult to detect with observations at 1.4 GHz (the frequency at which all other known radio haloes have been best studied). The spectrum of the halo is inconsistent with a secondary origin of the relativistic electrons, but instead supports turbulent acceleration, which suggests that many radio haloes in the Universe should emit mainly at low frequencies.Comment: 18 pages, 4 figures, Nature 455, 94

    Simulating cosmic rays in clusters of galaxies - II. A unified scheme for radio halos and relics with predictions of the gamma-ray emission

    Full text link
    The thermal plasma of galaxy clusters lost most of its information on how structure formation proceeded as a result of dissipative processes. In contrast, non-equilibrium distributions of cosmic rays (CR) preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes. This information can be unveiled by observations of non-thermal radiative processes, including radio synchrotron, hard X-ray, and gamma-ray emission. To explore this, we use high-resolution simulations of a sample of galaxy clusters spanning a mass range of about two orders of magnitudes, and follow self-consistent CR physics on top of the radiative hydrodynamics. We model CR electrons that are accelerated at cosmological structure formation shocks and those that are produced in hadronic interactions of CRs with ambient gas protons. We find that CR protons trace the time integrated non-equilibrium activities of clusters while shock-accelerated CR electrons probe current accretion and merging shock waves. The resulting inhomogeneous synchrotron emission matches the properties of observed radio relics. We propose a unified model for the generation of radio halos. Giant radio halos are dominated in the centre by secondary synchrotron emission with a transition to the synchrotron radiation emitted from shock-accelerated electrons in the cluster periphery. This model is able to explain the observed correlation of mergers with radio halos, the larger peripheral variation of the spectral index, and the large scatter in the scaling relation between cluster mass and synchrotron emission. Future low-frequency radio telescopes (LOFAR, GMRT, MWA, LWA) are expected to probe the accretion shocks of clusters. [abridged]Comment: 32 pages, 19 figures, small changes to match the version to be published by MNRAS, full resolution version available at http://www.cita.utoronto.ca/~pfrommer/Publications/CRs_non-thermal.pd

    Detection of a radio bridge in Abell 3667

    Get PDF
    We have detected a radio bridge of unpolarized synchrotron emission connecting the NW relic of the galaxy cluster Abell 3667 to its central regions. We used data at 2.3 GHz from the S-band Polarization All Sky Survey (S-PASS) and at 3.3 GHz from a follow up observation, both conducted with the Parkes Radio Telescope. This emission is further aligned with a diffuse X-ray tail, and represents the most compelling evidence for an association between intracluster medium turbulence and diffuse synchrotron emission. This is the first clear detection of a bridge associated both with an outlying cluster relic and X-ray diffuse emission. All the indicators point toward the synchrotron bridge being related to the post-shock turbulent wake trailing the shock front generated by a major merger in a massive cluster. Although predicted by simulations, this is the first time such emission is detected with high significance and clearly associated with the path of a confirmed shock. Although the origin of the relativistic electrons is still unknown, the turbulent re-acceleration model provides a natural explanation for the large-scale emission. The equipartition magnetic field intensity of the bridge is B_eq = 2.2 +/- 0.3 \mu G. We further detect diffuse emission coincident with the central regions of the cluster for the first time.Comment: 10 pages, 16 figures, accepted for publication on MNRAS. Replaced with the version accepted for publication: also the 3.3 GHz image cleaned from compact sources; 8 more figures; details on data reduction and compact source cleaning added; new estimate of the magnetic field. Some figures at resolution lower than the original one

    A search for diffuse radio emission in the relaxed, cool-core galaxy clusters A1068, A1413, A1650, A1835, A2029, and Ophiuchus

    Full text link
    We analyze sensitive, high-dynamic-range, observations to search for extended, diffuse, radio emission in relaxed and cool-core galaxy clusters. We performed deep 1.4 GHz Very Large Array observations, of A1068, A1413, A1650, A1835, A2029, and complemented our dataset with archival observations of Ophiuchus. We find that, in the central regions of A1835, A2029, and Ophiuchus, the dominant radio galaxy is surrounded by diffuse low-brightness radio emission that takes the form of a mini-halo. We detect no diffuse emission in A1650, at a surface brightness level of the other mini-halos. We find low significance indications of diffuse emission in A1068 and A1413, although to be classified as mini-halos they would require further investigation, possibly with data of higher signal-to-noise ratio. In the Appendix, we report on the serendipitous detection of a giant radio galaxy with a total spatial extension of ~1.6 Mpc.Comment: 13 pages, 10 figures, A&A in press. For a version with high quality figures, see http://erg.ca.astro.it/preprints/mini_halo_1

    Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry

    Get PDF
    The dielectric properties of alpha-MgH2 are investigated in the photon energy range between 1 and 6.5 eV. For this purpose, a novel sample configuration and experimental setup are developed that allow both optical transmission and ellipsometric measurements of a transparent thin film in equilibrium with hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about 80% over the whole visible spectrum. The dielectric function found in this work confirms very recent band structure calculations using the GW approximation by Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table
    • …
    corecore