141 research outputs found

    Evaluation of Intereye Corneal Asymmetry in Patients with Keratoconus. A Scheimpflug Imaging Study

    Get PDF
    Purpose: To assess the correlation between keratoconus severity and intereye asymmetry of pachymetric data and posterior elevation values and to evaluate their combined accuracy in discriminating normal corneas from those with keratoconus. Methods: This study included 97 patients: 65 subjects with bilateral normal corneas (NC) and 32 with keratoconus (KC). Central corneal thickness (CCT), thinnest corneal thickness (ThCT) and posterior elevation (PE) at the thinnest point of the cornea were measured in both eyes using Scheimpflug imaging. Intereye asymmetry and its correlation with keratoconus severity were calculated for each variable. The area under the receiver operating characteristic curve (AUROC) was used to compare predictive accuracy of different variables for keratoconus. Results: In normal eyes, intereye differences were significantly lower compared with the keratoconus eyes (p<0.001, for CCT, ThCT and PE). There was a significant exponential correlation between disease severity and intereye asymmetry of steep keratometry (r(2) = 0.55, p<0.001), CCT (r(2) = 0.39, p<0.001), ThCT (r(2) = 0.48, p<0.001) and PE (r(2) = 0.64, p<0.001). After adjustment for keratoconus severity, asymmetry in thinnest pachymetry proved to be the best parameter to characterize intereye corneal asymmetry in keratoconus. This variable had high accuracy and significantly better discriminating ability (AUROC: 0.99) for KC than posterior elevation (AUROC: 0.96), ThCT (AUROC: 0.94) or CCT (AUROC: 0.92) alone. Conclusions: There is an increased intereye asymmetry in keratometry, pachymetry and posterior corneal elevation values in keratoconic patients compared to subjects with normal corneas. Keratoconus patients with more severe disease are also more asymmetric in their disease status which should be taken into account during clinical care

    Bacterial Symbiosis Maintenance in the Asexually Reproducing and Regenerating Flatworm Paracatenula galateia

    Get PDF
    Bacteriocytes set the stage for some of the most intimate interactions between animal and bacterial cells. In all bacteriocyte possessing systems studied so far, de novo formation of bacteriocytes occurs only once in the host development, at the time of symbiosis establishment. Here, we present the free-living symbiotic flatworm Paracatenula galateia and its intracellular, sulfur-oxidizing bacteria as a system with previously undescribed strategies of bacteriocyte formation and bacterial symbiont transmission. Using thymidine analogue S-phase labeling and immunohistochemistry, we show that all somatic cells in adult worms – including bacteriocytes – originate exclusively from aposymbiotic stem cells (neoblasts). The continued bacteriocyte formation from aposymbiotic stem cells in adult animals represents a previously undescribed strategy of symbiosis maintenance and makes P. galateia a unique system to study bacteriocyte differentiation and development. We also provide morphological and immunohistochemical evidence that P. galateia reproduces by asexual fragmentation and regeneration (paratomy) and, thereby, vertically transmits numerous symbiont-containing bacteriocytes to its asexual progeny. Our data support the earlier reported hypothesis that the symbiont population is subjected to reduced bottleneck effects. This would justify both the codiversification between Paracatenula hosts and their Candidatus Riegeria symbionts, and the slow evolutionary rates observed for several symbiont genes

    Expression and Putative Function of Innate Immunity Genes under in situ Conditions in the Symbiotic Hydrothermal Vent Tubeworm Ridgeia piscesae

    Get PDF
    The relationships between hydrothermal vent tubeworms and sulfide-oxidizing bacteria have served as model associations for understanding chemoautotrophy and endosymbiosis. Numerous studies have focused on the physiological and biochemical adaptations that enable these symbioses to sustain some of the highest recorded carbon fixation rates ever measured. However, far fewer studies have explored the molecular mechanisms underlying the regulation of host and symbiont interactions, specifically those mediated by the innate immune system of the host. To that end, we conducted a series of studies where we maintained the tubeworm, Ridgeia piscesae, in high-pressure aquaria and examined global and quantitative changes in gene expression via high-throughput transcriptomics and quantitative real-time PCR (qPCR). We analyzed over 32,000 full-length expressed sequence tags as well as 26 Mb of transcript sequences from the trophosome (the organ that houses the endosymbiotic bacteria) and the plume (the gas exchange organ in contact with the free-living microbial community). R. piscesae maintained under conditions that promote chemoautotrophy expressed a number of putative cell signaling and innate immunity genes, including pattern recognition receptors (PRRs), often associated with recognizing microbe-associated molecular patterns (MAMPs). Eighteen genes involved with innate immunity, cell signaling, cell stress and metabolite exchange were further analyzed using qPCR. PRRs, including five peptidoglycan recognition proteins and a Toll-like receptor, were expressed significantly higher in the trophosome compared to the plume. Although PRRs are often associated with mediating host responses to infection by pathogens, the differences in expression between the plume and trophosome also implicate similar mechanisms of microbial recognition in interactions between the host and symbiont. We posit that regulation of this association involves a molecular “dialogue” between the partners that includes interactions between the host’s innate immune system and the symbiont

    Functional impairment of systemic scleroderma patients with digital ulcerations: Results from the DUO registry

    Get PDF

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    Corticosteroids in ophthalmology : drug delivery innovations, pharmacology, clinical applications, and future perspectives

    Get PDF

    Differences in pairing and cluster formation of T cell receptor α- and β-chains in T cell clones and fusion hybridomas

    No full text
    The questions of T cell receptor (TCR) clustering and preferential pairing of TCR α- and β-chains are discussed controversially. We here describe the rare case of a non-pairing TCR α- TCR β combination detected in the murine T cell hybridoma Hy-E6. Of its two TCR α-chains (Vα3.2, Vβ17) and one Vβ16-chain only the Vα17/Vβ16 TCR is exposed on the surface, despite intracellular expression of Vα3.2 protein. The lack of Vα3.2/Vβ16 pairing was confirmed by TCR transfections. Surprisingly, however, the parental T cell clone CTL-E6 expressed both α-chains on its plasma membrane. Different size distribution of TCR clusters in CTL-E6 versus Hy-E6 and transfectants as determined by Blue-Native gel electrophoresis indicated differences in the supra-molecular TCR assembly as one possible reason for this phenomenon. Our data further reveal that the nominal specificity of CTL-E6 for the fully agonistic trinitrophenyl (TNP) modified peptide M4L-TNP was specifically mediated by the trimeric Vα3.2/Vα17/Vβ16 TCR of CTL-E6. In contrast, the Vα17/Vβ16 combination in Hy-E6 only conferred specificity for the cross-reactive partial agonist O4-TNP. Both specificities are H-2Kb-restricted and, hence, appear to be positively selected. The differences in TCR clustering in CTL and hybridoma might indicate differences in the reception and transmission of TCR-signals between these two cell types
    corecore