44 research outputs found

    TERRITORIAL BEHAVIOR AND CORTICAL BRAIN PLASTICITY IN ADULT MALE SCELOPORUS OCCIDENTALIS

    Get PDF
    The hippocampus is a brain region that can undergo tremendous plasticity in adulthood. The hippocampus is related to the formation of spatial memories in birds and mammals. In birds, plasticity in the hippocampus occurs when formation of such memories is directly relevant to survival or reproduction, such as for breeding or food caching. In reptiles, the homologues to the hippocampus are the dorsal and medial cortices (DC and MC). In several lizard, snake and turtle species, these structures have been related to spatial memory. Experimental investigations indicate that differences in DC volume are related to space use associated with differing foraging ecologies. Differences in MC volume have been associated with territory size-based mate acquisition strategies. Furthermore, territory size has previously been correlated with plasma testosterone (T) levels. Therefore, I hypothesized that neuroplasticity within the MC/DC is controlled by demands on spatial navigation and seasonal differences and that these changes may involve the action of T. During two experimental trials, male Western Fence Lizards (Sceloporus occidentalis) were placed into either large or small semi-natural enclosures and allowed to interact with a female and intruder males over the span of seven weeks. One trial was performed during the spring breeding season and the other during the summer non breeding season, to examine seasonal differences in plasticity. Blood samples were collected at initial time of capture and before sacrifice to measure plasma T. Immunostaining for doublecortin was used to determine the density of immature neurons in each region, and cresyl violet staining allowed for volume measurements of specific regions. MC cell layer neurogenesis was higher in lizards placed in large enclosures than those in small enclosures and higher in the summer than in the spring. DC volume was smaller in lizards held in large enclosures than those in small enclosures. The decreased DC volume seen lizards held in large enclosures may indicate a cost to the increased neurogenesis in the MC of lizards in the same enclosures. These results indicate a possible trade-off between DC volume and MC neurogenesis that allows for switching between the ability to solve novel spatial tasks using the DC while storing a cognitive map in the MC. During the spring, T had no relationship with MC volume, while during the summer this was negative, so effects of T on the MC may be seasonal

    Structural plasticity of the living kinetochore

    Get PDF
    The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule. This defined architecture facilitates quantitative examination of kinetochores during the cell cycle. Using three independent measures-calibrated imaging, FRAP, and photoconversion-we find that the Dam1 submodule is unchanged during anaphase, whereas MIND and Ndc80 submodules add copies to form an "anaphase configuration" kinetochore. Microtubule depolymerization and kinesin-related motors contribute to copy addition. Mathematical simulations indicate that the addition of microtubule attachments could facilitate tracking during rapid microtubule depolymerization. We speculate that the minimal kinetochore configuration, which exists from G1 through metaphase, allows for correction of misattachments. Our study provides insight into dynamics and plasticity of the kinetochore structure during chromosome segregation in living cells

    A Prospective Multicenter Study Evaluating Learning Curves and Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography Among Advanced Endoscopy Trainees: The Rapid Assessment of Trainee Endoscopy Skills (RATES) Study

    Get PDF
    Background and aims Based on the Next Accreditation System, trainee assessment should occur on a continuous basis with individualized feedback. We aimed to validate endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) learning curves among advanced endoscopy trainees (AETs) using a large national sample of training programs and to develop a centralized database that allows assessment of performance in relation to peers. Methods ASGE recognized training programs were invited to participate and AETs were graded on ERCP and EUS exams using a validated competency assessment tool that assesses technical and cognitive competence in a continuous fashion. Grading for each skill was done using a 4-point scoring system and a comprehensive data collection and reporting system was built to create learning curves using cumulative sum analysis. Individual results and benchmarking to peers were shared with AETs and trainers quarterly. Results Of the 62 programs invited, 20 programs and 22 AETs participated in this study. At the end of training, median number of EUS and ERCP performed/AET was 300 (range 155-650) and 350 (125-500). Overall, 3786 exams were graded (EUS:1137; ERCP–biliary 2280, pancreatic 369). Learning curves for individual endpoints, and overall technical/cognitive aspects in EUS and ERCP demonstrated substantial variability and were successfully shared with all programs. The majority of trainees achieved overall technical (EUS: 82%; ERCP: 60%) and cognitive (EUS: 76%; ERCP: 100%) competence at conclusion of training. Conclusions These results demonstrate the feasibility of establishing a centralized database to report individualized learning curves and confirm the substantial variability in time to achieve competence among AETs in EUS and ERCP

    Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography, From Training Through Independent Practice.

    Get PDF
    BACKGROUND & AIMS: It is unclear whether participation in competency-based fellowship programs for endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) results in high-quality care in independent practice. We measured quality indicator (QI) adherence during the first year of independent practice among physicians who completed endoscopic training with a systematic assessment of competence. METHODS: We performed a prospective multicenter cohort study of invited participants from 62 training programs. In phase 1, 24 advanced endoscopy trainees (AETs), from 20 programs, were assessed using a validated competence assessment tool. We used a comprehensive data collection and reporting system to create learning curves using cumulative sum analysis that were shared with AETs and trainers quarterly. In phase 2, participating AETs entered data into a database pertaining to every EUS and ERCP examination during their first year of independent practice, anchored by key QIs. RESULTS: By the end of training, most AETs had achieved overall technical competence (EUS 91.7%, ERCP 73.9%) and cognitive competence (EUS 91.7%, ERCP 94.1%). In phase 2 of the study, 22 AETs (91.6%) participated and completed a median of 136 EUS examinations per AET and 116 ERCP examinations per AET. Most AETs met the performance thresholds for QIs in EUS (including 94.4% diagnostic rate of adequate samples and 83.8% diagnostic yield of malignancy in pancreatic masses) and ERCP (94.9% overall cannulation rate). CONCLUSIONS: In this prospective multicenter study, we found that although competence cannot be confirmed for all AETs at the end of training, most meet QI thresholds for EUS and ERCP at the end of their first year of independent practice. This finding affirms the effectiveness of training programs. Clinicaltrials.gov ID NCT02509416

    Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography, From Training Through Independent Practice.

    Get PDF
    BACKGROUND & AIMS: It is unclear whether participation in competency-based fellowship programs for endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) results in high-quality care in independent practice. We measured quality indicator (QI) adherence during the first year of independent practice among physicians who completed endoscopic training with a systematic assessment of competence. METHODS: We performed a prospective multicenter cohort study of invited participants from 62 training programs. In phase 1, 24 advanced endoscopy trainees (AETs), from 20 programs, were assessed using a validated competence assessment tool. We used a comprehensive data collection and reporting system to create learning curves using cumulative sum analysis that were shared with AETs and trainers quarterly. In phase 2, participating AETs entered data into a database pertaining to every EUS and ERCP examination during their first year of independent practice, anchored by key QIs. RESULTS: By the end of training, most AETs had achieved overall technical competence (EUS 91.7%, ERCP 73.9%) and cognitive competence (EUS 91.7%, ERCP 94.1%). In phase 2 of the study, 22 AETs (91.6%) participated and completed a median of 136 EUS examinations per AET and 116 ERCP examinations per AET. Most AETs met the performance thresholds for QIs in EUS (including 94.4% diagnostic rate of adequate samples and 83.8% diagnostic yield of malignancy in pancreatic masses) and ERCP (94.9% overall cannulation rate). CONCLUSIONS: In this prospective multicenter study, we found that although competence cannot be confirmed for all AETs at the end of training, most meet QI thresholds for EUS and ERCP at the end of their first year of independent practice. This finding affirms the effectiveness of training programs. Clinicaltrials.gov ID NCT02509416

    SBML Level 3: an extensible format for the exchange and reuse of biological models

    Get PDF
    Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution

    Centering the needs of transgender, non-binary, and gender-diverse populations in neuroendocrine models of gender-affirming hormone therapy

    No full text
    The majority of studies attempting to address the healthcare needs of the millions of transgender, non-binary, and/or gender diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has direct translational benefit for TNG individuals on gender affirming hormone therapies (GAHT). Despite this potential, endocrinological healthcare for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique healthcare needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT-users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHT will greatly benefit the healthcare outcomes of TNG people
    corecore