432 research outputs found

    Understanding cochlear implants: a guide for parents and educators

    Get PDF
    This paper discusses the development of a guidebook for parents and teachers of children with cochlear implants

    Turn-sharing revisited : An exploration of simultaneous speech in interactions between couples

    Get PDF
    This paper investigates one particular type of simultaneous speech, namely turn-sharing, in the Freiburg Sofa Talks, a corpus of video-recorded dyadic conversations between partners, friends, and siblings who are recollecting events they have experienced together in the past. The focus is on interactions in German and French. In turnsharing, participants aim at saying the same thing at the same time, using these moments to convey something to each other, and occasionally to a third party in the room. We identify two different types of turn-sharing, choral performance and chiming in, which are brought off by different micro-practices with verbal, prosodic, and bodily resources. Each type achieves something different interactionally, either displaying a shared affective stance towards something in an alternative world or embodying an epistemic claim to know as much as the main speaker. We conclude that choral performance and chiming in are two sedimented formats for turn-sharing that are achieved with different practices using semiotic resources that are comparable, if not identical, across languages. (C) 2019 Elsevier B.V. All rights reserved.Peer reviewe

    Application of Strategic Planning Process with Fleet Level Analysis Methods

    Get PDF
    The goal of this work is to quantify and characterize the potential system-wide reduction of fuel consumption and corresponding CO2 emissions, resulting from the introduction of N+2 aircraft technologies and concepts into the fleet. Although NASA goals for this timeframe are referenced against a large twin aisle aircraft we consider their application across all vehicle classes of the commercial aircraft fleet, from regional jets to very large aircraft. In this work the authors describe and discuss the formulation and implementation of the fleet assessment by addressing the main analytical components: forecasting, operations allocation, fleet retirement, fleet replacement, and environmental performance modeling

    Effects of Surface Area and Flow Rate on Marine Bacterial Growth in Activated Carbon Columns

    Get PDF
    The colonization of granular activated carbon columns by bacteria can have both beneficial and potentially detrimental consequences. Bacterial growth on the carbon surface can remove adsorbed organics and thus partially regenerate the carbon bed. However, growth can also increase the levels of bacteria in the column effluents, which can adversely affect downstream uses of the treated water. This study of a sand column and several activated carbon columns demonstrated that considerable marine bacterial growth occurred in both sand and carbon columns and that this growth increased the number of bacteria in column effluents. Activated carbon supported approximately 50% more bacteria than did sand. Bacterial growth on activated carbon was reduced by increasing the flow rate through a carbon column and increasing the carbon particle size. Scanning electron micrographs showed that bacteria preferred to attach in the protected crevices on both the sand and carbon surface. The results of this study indicated that the colonization of activated carbon by marine bacteria was enhanced because of carbon's high surface area, its rough surface texture, and its ability to absorb organic materials

    AVALIAÇÃO DE CAPITAL INTELECTUAL EM FUSÕES E AQUISIÇÕES DE INSTITUIÇÕES FINANCEIRAS. ESTUDO DE CASO DO BANCO ITAÚ HOLDING FINANCEIRA S.A.

    Get PDF
    Este estudo teve por objetivo mapear os critérios de medição do capital intelectual, selecionar os mais adequados e aplicá-los na avaliação dos ganhos obtidos pelo Banco Itaú, com as aquisições realizadas no período de 1994 a 2003; além de desvendar as motivações estratégicas que justificaram tais aquisições. A pesquisa fundamentou-se no método do caso e orientou-se pela premissa de que o valor de fusões e aquisições de instituições financeiras no Brasil tem envolvido ágios (diferença entre valor financeiro e patrimonial) que, em alguns casos, superaram em mais de uma vez o valor patrimonial da instituição adquirida. O trabalho conclui que esta mais-valia, deve-se ao que se conceitua como capital intelectual. Palavras-chave: Capital Intelectual; Banco Itaú; Fusões e Aquisiçõe

    Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles

    Full text link
    [EN] Oxide-supported copper nanoparticles exhibit promising properties as catalysts for the selective hydrogenation of CO2 to methanol. Both reaction rate and selectivity depend conspicuously on the nature of the oxide support/promoter at the metal periphery. However, a major challenge is the achievement of a quantitative description of such metal/oxide promotion effects, which is an essential step toward a rational catalyst design. We investigate structure-performance relationships with a series of model catalysts consisting of Cu nanoparticles dispersed on a mesoporous gamma-Al2O3 carrier overlaid with different transition metal oxides spanning a broad range of Lewis acidity (YOx, ScOx, ZrOx, TaOx). Remarkably, the apparent activation energy (E-a) for methanol formation is found to downscale linearly with the relative Lewis acidity of coordinatively unsaturated metal surface sites (cus) exposed on the oxide support, making this single physicochemical parameter a suitable reactivity descriptor in the whole study space. In correspondence with this performance trend, in situ Fourier transform infrared spectroscopy reveals that both the ionic character and the relative reactivity of bidentate formate species, developed on the catalyst surface under reaction conditions, vary systematically with the surface Lewis acidity of the oxide support. These findings support the involvement of oxide-adsorbed bidentate formate species as reaction intermediates and point to the relative electron-accepting character of the Lewis cus on the oxide surface as the factor determining the stability of these intermediates and the overall energy barrier for the reaction. Our results contribute a unifying and quantitative description for support effects in CO2 hydrogenation to methanol on oxide-supported copper nanoparticles and provide a blueprint for a predictive description of metal-oxide promotion effects, which are ubiquitous in heterogeneous catalysis.The authors are grateful to P. Bussian and Sasol for providing the alumina precursor. S. Ruthe and K. Jeske (MPI-KOFO) are acknowledged for assistance with chromatographic product quantification. J. M. Salas (ITQ) and J. P. Holgado (ICMS-CSIC, Spain) are acknowledged for contributions to the in situ FTIR and XPS experiments, respectively. This research received funding from the Max Planck Society, the Bundesministerium ffir Bildung and Forschung (project 01DG17019), the Spanish Ministry of Science, Innovation and Universities (Severo Ochoa Excellence award SEV-20160683), and the Generalitat Valenciana (Scientific Excellence of Junior Researchers, SEJI2018/011). B.S. acknowledges the Humboldt foundation for a postdoctoral fellowship.Kim, J.; Sarma, BB.; Andres-Marcos, E.; Pfaender, N.; Concepción Heydorn, P.; Prieto González, G. (2019). Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles. ACS Catalysis. 9(11):10409-10417. https://doi.org/10.1021/acscatal.9b02412S104091041791

    One Pot Cooperation of Single Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization - Hydrosilylation Process

    Get PDF
    [EN] Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru-1/CeO2 and Rh-1/CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov alpha-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.X-ray absorption experiments were performed at the ALBA Synchrotron Light Source (Spain), experiments 2018082961 and 2019023278. L. Simonelli and C. Marini (CLAESSALBA beamline) are thanked for beamline setup. E. Andres, M. E. Martinez, M. Garcia, and I. Lopez (ITQ), are acknowledged for their assistance with XAS experiments. J. Buscher, J. Ternedien, B. Spliethoff, and C. Wirtz (MPI-KOFO) are acknowledged for the performance of XPS, XRD, BF-TEM and 2H NMR experiments, respectively. I. C. de Freitas (MPIKOFO) is thanked for assistance with Raman spectroscopy. J. M. Salas (ITQ) is gratefully acknowledged for his contribution to CO-FTIR experiments. J. J. Barnes and Shell (Amsterdam) are acknowledged for kindly providing an industrial olefin mixture as feed. Authors are thankful to F. Schuth for the provision of lab space and continued support. Part of the HRSTEM and EDX-STEM studies were conducted at the Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Spain. R.A. gratefully acknowledges the support from the Spanish Ministry of Economy and Competitiveness (MINECO) through project grant MAT2016-79776-P (AEI/FEDER, UE) and from the European Union H2020 programs "ESTEEM3" (823717). The authors acknowledge support by the state of Baden-Wurttemberg through bwHPC (bwUnicluster and JUSTUS, RV bw17D01), by the GRK 2450 and by the Helmholtz Association. This research received funding from the Max Planck Society, and the Fonds der Chemische Industrie of Germany. Funding from the Spanish Ministry of Science, Innovation and Universities (Severo Ochoa program SEV-2016-0683 and grant RTI2018096399-A-I00) is also acknowledged. B.B.S. acknowledges the Alexander von Humboldt Foundation for a postdoctoral scholarship. Open Access funding is provided by the Max Planck Society.Sarma, BB.; Kim, J.; Amsler, J.; Agostini, G.; Weidenthaler, C.; Pfaender, N.; Arenal, R.... (2020). One Pot Cooperation of Single Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization - Hydrosilylation Process. Angewandte Chemie International Edition. 59(14):5806-5815. https://doi.org/10.1002/anie.201915255S580658155914Liang, S., Hao, C., & Shi, Y. (2015). The Power of Single-Atom Catalysis. ChemCatChem, 7(17), 2559-2567. doi:10.1002/cctc.201500363Liu, J. (2016). Catalysis by Supported Single Metal Atoms. ACS Catalysis, 7(1), 34-59. doi:10.1021/acscatal.6b01534Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881cLiu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1Parkinson, G. S. (2019). Single-Atom Catalysis: How Structure Influences Catalytic Performance. Catalysis Letters, 149(5), 1137-1146. doi:10.1007/s10562-019-02709-7Babucci, M., Sarac Oztuna, F. E., Debefve, L. M., Boubnov, A., Bare, S. R., Gates, B. C., … Uzun, A. (2019). Atomically Dispersed Reduced Graphene Aerogel-Supported Iridium Catalyst with an Iridium Loading of 14.8 wt %. ACS Catalysis, 9(11), 9905-9913. doi:10.1021/acscatal.9b02231Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., … Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8), 634-641. doi:10.1038/nchem.1095Duan, S., Wang, R., & Liu, J. (2018). Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM. Nanotechnology, 29(20), 204002. doi:10.1088/1361-6528/aab1d2Pinto, H., Haapasilta, V., Lokhandwala, M., Öberg, S., & Foster, A. S. (2017). Adsorption and migration of single metal atoms on the calcite (10.4) surface. Journal of Physics: Condensed Matter, 29(13), 135001. doi:10.1088/1361-648x/aa5bd9Parkinson, G. S., Novotny, Z., Argentero, G., Schmid, M., Pavelec, J., Kosak, R., … Diebold, U. (2013). Carbon monoxide-induced adatom sintering in a Pd–Fe3O4 model catalyst. Nature Materials, 12(8), 724-728. doi:10.1038/nmat3667Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 46(8), 1740-1748. doi:10.1021/ar300361mCui, X., Li, W., Ryabchuk, P., Junge, K., & Beller, M. (2018). Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 1(6), 385-397. doi:10.1038/s41929-018-0090-9Mitchell, S., Vorobyeva, E., & Pérez‐Ramírez, J. (2018). The Multifaceted Reactivity of Single‐Atom Heterogeneous Catalysts. Angewandte Chemie International Edition, 57(47), 15316-15329. doi:10.1002/anie.201806936Mitchell, S., Vorobyeva, E., & Pérez‐Ramírez, J. (2018). Die facettenreiche Reaktivität heterogener Einzelatom‐Katalysatoren. Angewandte Chemie, 130(47), 15538-15552. doi:10.1002/ange.201806936Kumar, A., Bhatti, T. M., & Goldman, A. S. (2017). Dehydrogenation of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes. Chemical Reviews, 117(19), 12357-12384. doi:10.1021/acs.chemrev.7b00247Lang, R., Li, T., Matsumura, D., Miao, S., Ren, Y., Cui, Y.-T., … Zhang, T. (2016). Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angewandte Chemie International Edition, 55(52), 16054-16058. doi:10.1002/anie.201607885Lang, R., Li, T., Matsumura, D., Miao, S., Ren, Y., Cui, Y.-T., … Zhang, T. (2016). Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angewandte Chemie, 128(52), 16288-16292. doi:10.1002/ange.201607885Cui, X., Junge, K., Dai, X., Kreyenschulte, C., Pohl, M.-M., Wohlrab, S., … Beller, M. (2017). Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions. ACS Central Science, 3(6), 580-585. doi:10.1021/acscentsci.7b00105Chen, Y., Ji, S., Sun, W., Chen, W., Dong, J., Wen, J., … Li, Y. (2018). Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 140(24), 7407-7410. doi:10.1021/jacs.8b03121Malta, G., Kondrat, S. A., Freakley, S. J., Davies, C. J., Lu, L., Dawson, S., … Hutchings, G. J. (2017). Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 355(6332), 1399-1403. doi:10.1126/science.aal3439Ye, L., Duan, X., Wu, S., Wu, T.-S., Zhao, Y., Robertson, A. W., … Tsang, S. C. E. (2019). Self- regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nature Communications, 10(1). doi:10.1038/s41467-019-08827-5Zhang, X., Sun, Z., Wang, B., Tang, Y., Nguyen, L., Li, Y., & Tao, F. F. (2018). C–C Coupling on Single-Atom-Based Heterogeneous Catalyst. Journal of the American Chemical Society, 140(3), 954-962. doi:10.1021/jacs.7b09314Chen, Z., Vorobyeva, E., Mitchell, S., Fako, E., Ortuño, M. A., López, N., … Pérez-Ramírez, J. (2018). A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 13(8), 702-707. doi:10.1038/s41565-018-0167-2Wasilke, J.-C., Obrey, S. J., Baker, R. T., & Bazan, G. C. (2005). Concurrent Tandem Catalysis. Chemical Reviews, 105(3), 1001-1020. doi:10.1021/cr020018nLohr, T. L., & Marks, T. J. (2015). Orthogonal tandem catalysis. Nature Chemistry, 7(6), 477-482. doi:10.1038/nchem.2262Reuben, B., & Wittcoff, H. (1988). The SHOP process: An example of industrial creativity. Journal of Chemical Education, 65(7), 605. doi:10.1021/ed065p605Fogg, D. E., & dos Santos, E. N. (2004). Tandem catalysis: a taxonomy and illustrative review. Coordination Chemistry Reviews, 248(21-24), 2365-2379. doi:10.1016/j.ccr.2004.05.012Poe, S. L., Kobašlija, M., & McQuade, D. T. (2006). Microcapsule Enabled Multicatalyst System. Journal of the American Chemical Society, 128(49), 15586-15587. doi:10.1021/ja066476lLu, J., Dimroth, J., & Weck, M. (2015). Compartmentalization of Incompatible Catalytic Transformations for Tandem Catalysis. Journal of the American Chemical Society, 137(40), 12984-12989. doi:10.1021/jacs.5b07257Abel, M.-L. (2011). Organosilanes: Adhesion Promoters and Primers. Handbook of Adhesion Technology, 237-258. doi:10.1007/978-3-642-01169-6_11Semenov, V. V. (2011). Preparation, properties and applications of oligomeric and polymeric organosilanes. Russian Chemical Reviews, 80(4), 313-339. doi:10.1070/rc2011v080n04abeh004110Obligacion, J. V., & Chirik, P. J. (2018). Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nature Reviews Chemistry, 2(5), 15-34. doi:10.1038/s41570-018-0001-2Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800Pereira-Hernández, X. I., DeLaRiva, A., Muravev, V., Kunwar, D., Xiong, H., Sudduth, B., … Datye, A. K. (2019). Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 10(1). doi:10.1038/s41467-019-09308-5Speier, J. L., Zimmerman, R., & Webster, J. (1956). The Addition of Silicon Hydrides to Olefinic Double Bonds. Part I. The Use of Phenylsilane, Diphenylsilane, Phenylmethylsilane, Amylsilane and Tribromosilane. Journal of the American Chemical Society, 78(10), 2278-2281. doi:10.1021/ja01591a068Nakajima, Y., & Shimada, S. (2015). Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances, 5(26), 20603-20616. doi:10.1039/c4ra17281gMeister, T. K., Riener, K., Gigler, P., Stohrer, J., Herrmann, W. A., & Kühn, F. E. (2016). Platinum Catalysis Revisited—Unraveling Principles of Catalytic Olefin Hydrosilylation. ACS Catalysis, 6(2), 1274-1284. doi:10.1021/acscatal.5b02624Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535Ono, L. K., Yuan, B., Heinrich, H., & Cuenya, B. R. (2010). Formation and Thermal Stability of Platinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects. The Journal of Physical Chemistry C, 114(50), 22119-22133. doi:10.1021/jp1086703Stein, J., Lewis, L. N., Gao, Y., & Scott, R. A. (1999). In Situ Determination of the Active Catalyst in Hydrosilylation Reactions Using Highly Reactive Pt(0) Catalyst Precursors. Journal of the American Chemical Society, 121(15), 3693-3703. doi:10.1021/ja9825377Sadeghmoghaddam, E., Gu, H., & Shon, Y.-S. (2012). Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity. ACS Catalysis, 2(9), 1838-1845. doi:10.1021/cs300270dGaleandro-Diamant, T., Zanota, M.-L., Sayah, R., Veyre, L., Nikitine, C., de Bellefon, C., … Thieuleux, C. (2015). Platinum nanoparticles in suspension are as efficient as Karstedt’s complex for alkene hydrosilylation. Chemical Communications, 51(90), 16194-16196. doi:10.1039/c5cc05675fROTH, J. F., ABELL, J. B., FANNIN, L. W., & SCHAEFER, A. R. (1970). Catalytic Dehydrogenation of Higher Normal Paraffins to Linear Olefins. Advances in Chemistry, 193-203. doi:10.1021/ba-1970-0097.ch011Dry, M. E. (1990). The fischer-tropsch process - commercial aspects. Catalysis Today, 6(3), 183-206. doi:10.1016/0920-5861(90)85002-6Bukur, D. B., Lang, X., Akgerman, A., & Feng, Z. (1997). Effect of Process Conditions on Olefin Selectivity during Conventional and Supercritical Fischer−Tropsch Synthesis. Industrial & Engineering Chemistry Research, 36(7), 2580-2587. doi:10.1021/ie960507bPrieto, G., De Mello, M. I. S., Concepción, P., Murciano, R., Pergher, S. B. C., & Martı́nez, A. (2015). Cobalt-Catalyzed Fischer–Tropsch Synthesis: Chemical Nature of the Oxide Support as a Performance Descriptor. ACS Catalysis, 5(6), 3323-3335. doi:10.1021/acscatal.5b00057Keim, W. (2013). Oligomerization of Ethylene to α-Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP). Angewandte Chemie International Edition, 52(48), 12492-12496. doi:10.1002/anie.201305308Keim, W. (2013). Oligomerisierung von Ethen zu α-Olefinen: Erfindung und Entwicklung des Shell-Higher-Olefin-Prozesses (SHOP). Angewandte Chemie, 125(48), 12722-12726. doi:10.1002/ange.201305308Chalk, A. J., & Harrod, J. F. (1965). Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes1. Journal of the American Chemical Society, 87(1), 16-21. doi:10.1021/ja01079a004Jia, X., & Huang, Z. (2015). Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nature Chemistry, 8(2), 157-161. doi:10.1038/nchem.2417Dvořák, F., Farnesi Camellone, M., Tovt, A., Tran, N.-D., Negreiros, F. R., Vorokhta, M., … Fabris, S. (2016). Creating single-atom Pt-ceria catalysts by surface step decoration. Nature Communications, 7(1). doi:10.1038/ncomms10801Kozlov, S. M., Viñes, F., Nilius, N., Shaikhutdinov, S., & Neyman, K. M. (2012). Absolute Surface Step Energies: Accurate Theoretical Methods Applied to Ceria Nanoislands. The Journal of Physical Chemistry Letters, 3(15), 1956-1961. doi:10.1021/jz3006942Wodrich, M. D., Busch, M., & Corminboeuf, C. (2016). Accessing and predicting the kinetic profiles of homogeneous catalysts from volcano plots. Chemical Science, 7(9), 5723-5735. doi:10.1039/c6sc01660jGutiérrez-Tarriño, S., Concepción, P., & Oña-Burgos, P. (2018). Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives. European Journal of Inorganic Chemistry, 2018(45), 4867-4874. doi:10.1002/ejic.20180106

    Establishment of well-differentiated camelid airway cultures to study Middle East respiratory syndrome coronavirus.

    Get PDF
    In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus. Histological characterization revealed progressive epithelial cellular differentiation with well-resemblance to autologous ex vivo tissues. We demonstrate that MERS-CoV displays a divergent cell tropism and replication kinetics profile in both AEC models. Furthermore, we observed that in the camelid AEC models MERS-CoV replication can be inhibited by both type I and III interferons (IFNs). In conclusion, we successfully established camelid AEC cultures that recapitulate the in vivo airway epithelium and reflect MERS-CoV infection in vivo. In combination with human AEC cultures, this system allows detailed characterization of the molecular basis of MERS-CoV cross-species transmission in respiratory epithelium
    corecore