21 research outputs found
Health Status of Sand Flathead (Platycephalus bassensis), Inhabiting an Industrialised and Urbanised Embayment, Port Phillip Bay, Victoria as Measured by Biomarkers of Exposure and Effects
Port Phillip Bay, Australia, is a large semi-closed bay with over four million people living in its catchment basin. The Bay receives waters from the Yarra River which drains the city of Melbourne, as well as receiving the discharges of sewage treatment plants and petrochemical and agricultural chemicals. A 1999 study demonstrated that fish inhabiting Port Phillip Bay showed signs of effects related to pollutant exposure despite pollution management practices having been implemented for over a decade. To assess the current health status of the fish inhabiting the Bay, a follow up survey was conducted in 2015. A suite of biomarkers of exposure and effects were measured to determine the health status of Port Phillip Bay sand flathead (Platycephalus bassensis), namely ethoxyresorufin-O-deethylase (EROD) activity, polycyclic aromatic hydrocarbons (PAH) biliary metabolites, carboxylesterase activity (CbE) and DNA damage (8-oxo-dG). The reduction in EROD activity in the present study suggests a decline in the presence of EROD activity-inducing chemicals within the Bay since the 1990s. Fish collected in the most industrialised/urbanised sites did not display higher PAH metabolite levels than those in less developed areas of the Bay. Ratios of PAH biliary metabolite types were used to indicate PAH contaminant origin. Ratios indicated fish collected at Corio Bay and Hobsons Bay were subjected to increased low molecular weight hydrocarbons of petrogenic origin, likely attributed to the close proximity of these sites to oil refineries, compared to PAH biliary metabolites in fish from Geelong Arm and Mordialloc.Quantification of DNA damage indicated a localised effect of exposure to pollutants, with a 10-fold higher DNA damage level in fish sampled from the industrial site of Corio Bay relative to the less developed site of Sorrento. Overall, integration of biomarkers by multivariate analysis indicated that the health of fish collected in industrialised areas was compromised, with biologically significant biomarkers of effects (LSI, CF and DNA damage) discriminating between individuals collected in industrialised areas from observations made in fish collected in less developed areas of the Bay
The Roots of Virtue: A Cross-Cultural Lexical Analysis
Although the notion of virtue is increasingly prominent in psychology, the way it has been studied and conceptualised has been relatively Western-centric, and does not fully account for variations in how it has been understood cross-culturally. As such, an enquiry was conducted into ideas relating to virtue found across the world’s cultures, focusing specifically on so-called untranslatable words. Through a quasi-systematic search of academic and grey literature, together with conceptual snowballing and crowd-sourced suggestions, over 200 relevant terms were located. An adapted grounded theory analysis identified five themes which together provide an insight into the “roots” of virtue (i.e., the main sources from which it appears to spring): virtue itself (the concept of it); considerateness (caring about it); wisdom (knowing what it consists of); agency (managing to be/do it); and skill (mastery of the preceding elements). The results help shed further light on the potential dynamics of this important phenomenon
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Microplastics biomonitoring in Australian urban wetlands using a common noxious fish (Gambusia holbrooki)
Biomonitoring microplastics in freshwater ecosystems has been insufficient in comparison with its practice in marine environments. It is an important first step to understand microplastic uptake in organisms when assessing risk in natural freshwater habitats. We conducted microplastic biomonitoring within the Greater Melbourne Area; where the microplastic baseline pollution in freshwater organisms was largely unknown. A common noxious fish species, Gambusia holbrooki, was targeted. Individuals (n = 180) from nine wetlands were analyzed. Uptake pathway, size, weight and gender were examined in relation to microplastic uptake in the body (presumed uptake via gut) and head (presumed uptake via gills). On average, 19.4% of fish had microplastics present in their bodies with an abundance of 0.6 items per individual (items/ind) and 7.2% of fish had microplastics in their heads with an abundance of 0.1 items/ind. Polyester was the dominant plastic type and fibers were the most common shape. The amount of microplastics in Gambusia holbrooki in current study is relatively low in a global comparison. The bodies of fish contained more microplastics on average than heads, and the size of microplastics detected in heads were smaller than those found in bodies. Microplastic uptake was directly proportional to size and weight. Furthermore, female individuals showed a tendency to ingest more microplastics than males. Laboratory experiments under controlled conditions are suggested to further explore such relationships. Our findings are important to understanding the potential ecological risks posed by microplastics to organisms in freshwater environments and provide suitable methodologies to conduct biomonitoring in future investigations.
Municipal wastewater effluent licensing: A global perspective and recommendations for best practice
Advances in wastewater treatment have greatly improved the quality of municipal wastewater effluents in many parts of the world, but despite this, treated wastewaters can still pose a risk to the environment. Licensing plays a crucial role in the regulation of municipal wastewater effluents by setting standards or limits designed to protect the economic, environmental and societal values of waterbodies. Traditionally these standards have focused on physical and chemical water quality parameters within the discharge itself, however these approaches do not adequately account for emerging contaminants, potential effects of chemical mixtures, or variations in the sensitivity and resilience of receiving environments. In this review we focus on a number of industrialised countries and their approach to licensing. We consider how we can ensure licensing is effective, particularly when considering the rapid changes in our understanding of the impacts of discharges, the technical advances in our ability to detect chemicals at low concentrations and the progress in wastewater treatment technology. In order to meet the challenges required to protect the values of our waterways, licensing of effluents will need to ensure that there is no disconnect between the core values to be protected and the monitoring system designed to scrutinise performance of the WWTP. In many cases this may mean an expansion in the monitoring approaches used for both the effluent itself and the receiving waterbody
Municipal wastewater effluent licensing: A global perspective and recommendations for best practice
Advances in wastewater treatment have greatly improved the quality of municipal wastewater effluents in many parts of the world, but despite this, treated wastewaters can still pose a risk to the environment. Licensing plays a crucial role in the regulation of municipal wastewater effluents by setting standards or limits designed to protect the economic, environmental and societal values of waterbodies. Traditionally these standards have focused on physical and chemical water quality parameters within the discharge itself, however these approaches do not adequately account for emerging contaminants, potential effects of chemical mixtures, or variations in the sensitivity and resilience of receiving environments. In this review we focus on a number of industrialised countries and their approach to licensing. We consider how we can ensure licensing is effective, particularly when considering the rapid changes in our understanding of the impacts of discharges, the technical advances in our ability to detect chemicals at low concentrations and the progress in wastewater treatment technology. In order to meet the challenges required to protect the values of our waterways, licensing of effluents will need to ensure that there is no disconnect between the core values to be protected and the monitoring system designed to scrutinise performance of the WWTP. In many cases this may mean an expansion in the monitoring approaches used for both the effluent itself and the receiving waterbody
Ecological evidence links adverse biological effects to pesticide and metal contamination in an urban Australian watershed
Summary: Aquatic ecosystems near urban areas are often ecologically impaired, but causative factors are rarely identified. Effects may be revealed by considering multiple lines of evidence at different levels of biological organization. Biological impairment is evident in the urban section of the Upper Dandenong Creek Catchment (Victoria, Australia). We assessed whether episodic sewage spills or other pollutants were the cause of poor ecological condition in the stream. The evidence evaluated included chemical and invertebrate assessments, caging studies of mudsnails Potamopyrgus antipodarum, antioxidant biomarkers and endocrine disruption-related endpoints in fish (Carassius auratus and Gambusia holbrooki) and toxicological studies with chironomids (Chironomus tepperi). A combination of metals and pesticides is likely to be affecting the aquatic fauna across all biological levels, with macroinvertebrate communities, P. antipodarum and C. tepperi populations and C. auratus individuals all ecologically impaired. Adverse alterations to aquatic fauna were consistently seen in Bungalook Creek and persisted downstream of this confluence into Dandenong Creek. In addition, chemical assessments and toxicity identification evaluation (TIEs) resulted in several point sources of both metals and pesticides being identified as origins of impairment. This contrasted with an expectation that adverse effects were likely to be associated with sewer-related pollution. As a consequence, target areas and specific pollutants were identified for remediation instead of an expensive sewer upgrade. Synthesis and applications. The results demonstrate that it is important to investigate biological effects in different taxa, in both the laboratory and field, to understand which stressors are causing adverse effects on faunal assemblages. When adverse effects are seen across multiple levels of biological organization and caused by the same pollutant from an identifiable source, there is a clea
Morphometric parameters and numbers of sand flathead captured at each sampling station in Port Phillip Bay.
<p>Superscript letters indicate homogeneous subsets for each variable (α = 0.05). All values are presented as means ± SEM.</p
Factor loadings and individual % variance for derived components (eigenvalues > 1.0) issued from PCA analysis.
<p>Factor loadings and individual % variance for derived components (eigenvalues > 1.0) issued from PCA analysis.</p