159 research outputs found

    Vetores biológicos compreendendo o gene max, método de produção dos mesmos, método de expressão do gene max nas células e método de terapia gênica citoprotetora

    Get PDF
    Anuidade de pedido de patente de invenção no prazo ordinárioDepositadaA presente invenção está relacionada a construções de vetores de clonagem contendo o gene max. Especialmente, a presente invenção trata da introdução dos vetores de clonagem contendo o gene max nas células utilizando vetores de transporte. Adicionalmente, a presença de vetores de clonagem contendo o gene max nas células permite a expressão diferencial do gene max nas mesmas células. Adicionalmente, a presente invenção refere-se a um método de terapia gênica no qual a expressão diferencial do gene max possui atividade citoprotetora, especialmente neuroprotetora, podendo ser aplicada a terapêutica médica e veterinária para condições de neurodegeneração

    Perspective on Gene Therapy for Glaucoma

    Get PDF
    Glaucoma is a chronic and multifactorial neurodegenerative disease marked by structural damage to the optic nerve with axonal loss, progressive retinal ganglion cell degeneration, and optic disc excavation. Both high intraocular pressure and aging are important risk factors, but not essential to the progression of glaucomatous neurodegeneration. Current treatments are based on controlling intraocular pressure, which is not always effective in avoiding the progression of visual loss. In this sense, novel therapeutic strategies to glaucoma should aim to promote the neuroprotection of both the cell soma of retinal ganglion cells and the axons of the optic nerve. Gene therapy is a new therapeutical approach to glaucoma with a great capacity to overcome neurodegeneration. It consists of the transfer of exogenous genetic material to target cells with a therapeutic purpose. Gene therapy strategies for glaucoma include both the neuroprotection aiming to prevent cell soma and axonal loss and the regeneration of optic nerve axons. In this chapter, we review the most promising current gene therapies for glaucoma that address the various aspects of glaucoma pathology. We also discuss the potential of combining neuroprotective and regenerative strategies to reach a synergic effect for the treatment of glaucoma

    Efficient mutagenesis of the rhodopsin gene in rod photoreceptor neurons in mice

    Get PDF
    Dominant mutations in the rhodopsin gene, which is expressed in rod photoreceptor cells, are a major cause of the hereditary-blinding disease, autosomal dominant retinitis pigmentosa. Therapeutic strategies designed to edit such mutations will likely depend on the introduction of double-strand breaks and their subsequent repair by homologous recombination or non-homologous end joining. At present, the break repair capabilities of mature neurons, in general, and rod cells, in particular, are undefined. To detect break repair, we generated mice that carry a modified human rhodopsin-GFP fusion gene at the normal mouse rhodopsin locus. The rhodopsin-GFP gene carries tandem copies of exon 2, with an ISceI recognition site situated between them. An ISceI-induced break can be repaired either by non-homologous end joining or by recombination between the duplicated segments, generating a functional rhodopsin-GFP gene. We introduced breaks using recombinant adeno-associated virus to transduce the gene encoding ISceI nuclease. We found that virtually 100% of transduced rod cells were mutated at the ISceI site, with ∼85% of the genomes altered by end joining and ∼15% by the single-strand annealing pathway of homologous recombination. These studies establish that the genomes of terminally differentiated rod cells can be efficiently edited in living organisms

    Polymers for Improving the In Vivo Transduction Efficiency of AAV2 Vectors

    Get PDF
    Background: Adeno-associated virus has attracted great attention as vehicle for body-wide gene delivery. However, for the successful treatment of a disease such as Duchenne muscular dystrophy infusion of very large amounts of vectors is required. This not only raises questions about the technical feasibility of the large scale production but also about the overall safety of the approach. One way to overcome these problems would be to find strategies able to increase the in vivo efficiency. Methodology: Here, we investigated whether polymers can act as adjuvants to increase the in vivo efficiency of AAV2. Our strategy consisted in the pre-injection of polymers before intravenous administration of mice with AAV2 encoding a murine secreted alkaline phosphatase (mSeAP). The transgene expression, vector biodistribution and tissue transduction were studied by quantification of the mSeAP protein and real time PCR. The injection of polyinosinic acid and polylysine resulted in an increase of plasmatic mSeAP of 2- and 12-fold, respectively. Interestingly, polyinosinic acid pre-injection significantly reduced the neutralizing antibody titer raised against AAV2. Conclusions: Our results show that the pre-injection of polymers can improve the overall transduction efficiency of systemically administered AAV2 and reduce the humoral response against the capsid proteins

    A Novel Adeno-Associated Viral Variant for Efficient and Selective Intravitreal Transduction of Rat Müller Cells

    Get PDF
    BACKGROUND:The pathologies of numerous retinal degenerative diseases can be attributed to a multitude of genetic factors, and individualized treatment options for afflicted patients are limited and cost-inefficient. In light of the shared neurodegenerative phenotype among these disorders, a safe and broad-based neuroprotective approach would be desirable to overcome these obstacles. As a result, gene delivery of secretable-neuroprotective factors to Müller cells, a type of retinal glia that contacts all classes of retinal neurons, represents an ideal approach to mediate protection of the entire retina through a simple and innocuous intraocular, or intravitreal, injection of an efficient vehicle such as an adeno-associated viral vector (AAV). Although several naturally occurring AAV variants have been isolated with a variety of tropisms, or cellular specificities, these vectors inefficiently infect Müller cells via intravitreal injection. METHODOLOGY/PRINCIPAL FINDINGS:We have previously applied directed evolution to create several novel AAV variants capable of efficient infection of both rat and human astrocytes through iterative selection of a panel of highly diverse AAV libraries. Here, in vivo and in vitro characterization of these isolated variants identifies a previously unreported AAV variant ShH10, closely related to AAV serotype 6 (AAV6), capable of efficient, selective Müller cell infection through intravitreal injection. Importantly, this new variant shows significantly improved transduction relative to AAV2 (>60%) and AAV6. CONCLUSIONS/SIGNIFICANCE:Our findings demonstrate that AAV is a highly versatile vector capable of powerful shifts in tropism from minor sequence changes. This isolated variant represents a new therapeutic vector to treat retinal degenerative diseases through secretion of neuroprotective factors from Müller cells as well as provides new opportunities to study their biological functions in the retina

    AAV-Mediated Cone Rescue in a Naturally Occurring Mouse Model of CNGA3-Achromatopsia

    Get PDF
    Achromatopsia is a rare autosomal recessive disorder which shows color blindness, severely impaired visual acuity, and extreme sensitivity to bright light. Mutations in the alpha subunits of the cone cyclic nucleotide-gated channels (CNGA3) are responsible for about 1/4 of achromatopsia in the U.S. and Europe. Here, we test whether gene replacement therapy using an AAV5 vector could restore cone-mediated function and arrest cone degeneration in the cpfl5 mouse, a naturally occurring mouse model of achromatopsia with a CNGA3 mutation. We show that gene therapy leads to significant rescue of cone-mediated ERGs, normal visual acuities and contrast sensitivities. Normal expression and outer segment localization of both M- and S-opsins were maintained in treated retinas. The therapeutic effect of treatment lasted for at least 5 months post-injection. This study is the first demonstration of substantial, relatively long-term restoration of cone-mediated light responsiveness and visual behavior in a naturally occurring mouse model of CNGA3 achromatopsia. The results provide the foundation for development of an AAV5-based gene therapy trial for human CNGA3 achromatopsia
    corecore