196 research outputs found

    Repetitive Transcranial Magnetic Stimulation of Dorsolateral Prefrontal Cortex Affects Performance of the Wisconsin Card Sorting Task during Provision of Feedback

    Get PDF
    Early functional neuroimaging studies of tasks evaluating executive processes, such as the Wisconsin card sorting task (WCST), only assessed trials in blocks that may contain a large amount of different cognitive processes. More recently, we showed using event-related fMRI that the dorsolateral prefrontal cortex (DL-PFC) significantly increased activity during feedback but not matching periods of the WCST, consistent with its proposed role in the monitoring of information in working memory. Repetitive transcranial magnetic stimulation (rTMS) is a method that allows to disrupt processing within a given cortical region and to affect task performance for which this region is significantly solicited. Here we applied rTMS to test the hypothesis that the DL-PFC stimulation influences monitoring of working memory without interfering with other executive functions. We applied rTMS to the right DL-PFC and the vertex (control site) in different time points of the WCST. When rTMS was applied to the DL-PFC specifically during the period when subjects were receiving feedback regarding their previous response, WCST performance deteriorated, while rTMS did not affect performance during matching either when maintaining set or during set-shifting. This selective impairment of the DL-PFC is consistent with its proposed role in monitoring of events in working memory

    Exploring multiple factors affecting participation outcomes for children with communication aids

    Get PDF
    Many factors affect how much communication aids support and promote children’s participation in everyday settings. However, little research has explored which combinations of environmental, child and communication aid factors appear most influential. This paper will present preliminary findings from a pilot study of outcomes of communication aid provision to children. The main aims were to: (1) develop a self-report questionnaire for the parents and carers; (2) conduct a descriptive analysis of parents’ and carers’ perspectives. It is hoped that this presentation will stimulate discussion on issues such as identifying key influential factors in the take-up and use of communication aids and measuring children’s participation

    Encoding touch and the orbitofrontal cortex

    Get PDF
    Abstract: Lesion studies on nonhuman primates utilizing recognition memory tests have shown that the orbitofrontal cortex is critical for the encoding of novel information, and anatomical studies have shown that the orbitofrontal cortex forms part of a mnemonic circuit that connects limbic medial temporal areas with higher-order lateral frontal cortical regions. Furthermore, functional neuroimaging studies have demonstrated increased activity in the orbitofrontal cortex of the human brain during the encoding of novel visual and auditory information. The present positron emission tomography study examined brain activity related to the encoding of tactile information. Cerebral blood flow (CBF) in normal human subjects during the tactile exploration of novel stimuli from a related set of textures and patterns, as well as from a set of aversive tactile stimuli, was compared with CBF during a control condition involving familiar tactile stimuli. The results demonstrate that the right rostral orbitofrontal cortex is involved in the active encoding of novel tactile information, while a more caudal region of the orbitofrontal cortex, which is more closely connected with limbic and autonomic regions of the brain, was activated when subjects explored novel aversive tactile stimuli. These results suggest that the orbitofrontal cortex, through its connections with the limbic areas of the medial temporal lobe, influences the processing of incoming information and thus contributes to its encoding

    Emotion repair and the direction of attention in aversive contexts: Evidence from an attention-demanding task

    Get PDF
    Two studies (total N = 145) examined the novel idea that individual differences in emotion repair may relate to the attention deployment stage of emotion regulation. More specifically, it was hypothesized that high repair individuals would be able to maintain focus on an attention-demanding task in an aversive context, but that low repair individuals would not, in both cases relative to a control condition. This sort of interactive hypothesis was supported in Study 1, which manipulated aversive events through the use of concurrent auditory stimulation and conceptual replication was found in Study 2. Together, the two studies offer suggestive evidence for the role of attention direction in emotion repair

    Automated individual-level parcellation of Broca's region based on functional connectivity

    Get PDF
    Broca's region can be subdivided into its constituent areas 44 and 45 based on established differences in connectivity to superior temporal and inferior parietal regions. The current study builds on our previous work manually parcellating Broca's area on the individual-level by applying these anatomical criteria to functional connectivity data. Here we present an automated observer-independent and anatomy-informed parcellation pipeline with comparable precision to the manual labels at the individual-level. The method first extracts individualized connectivity templates of areas 44 and 45 by assigning to each surface vertex within the ventrolateral frontal cortex the partial correlation value of its functional connectivity to group-level templates of areas 44 and 45, accounting for other template connectivity patterns. To account for cross-subject variability in connectivity, the partial correlation procedure is then repeated using individual-level network templates, including individual-level connectivity from areas 44 and 45. Each node is finally labeled as area 44, 45, or neither, using a winner-take-all approach. The method also incorporates prior knowledge of anatomical location by weighting the results using spatial probability maps. The resulting area labels show a high degree of spatial overlap with the gold-standard manual labels, and group-average area maps are consistent with cytoarchitectonic probability maps of areas 44 and 45. To facilitate reproducibility and to demonstrate that the method can be applied to resting-state fMRI datasets with varying acquisition and preprocessing parameters, the labeling procedure is applied to two open-source datasets from the Human Connectome Project and the Nathan Kline Institute Rockland Sample. While the current study focuses on Broca's region, the method is adaptable to parcellate other cortical regions with distinct connectivity profiles

    Situating the default-mode network along a principal gradient of macroscale cortical organization

    Get PDF
    Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface-and are precisely equidistant-from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input
    corecore