139 research outputs found
Effect of galactooligosaccharides delivered in ovo on meat quality traits of broiler chickens exposed to heat stress
ABSTRACT: A study was carried out to evaluate meat quality traits in fast-growing chickens stimulated in ovo with trans-galactoolighosaccarides (GOS) and exposed to heat stress. On day 12 of egg incubation, 3,000 fertilized eggs (Ross 308) were divided into prebiotic group (GOS) injected with 3.5 mg GOS/egg, saline group (S) injected with physiological saline, and control group (C) uninjected. After hatching, 900 male chicks (300 chicks/treatment) were reared in floor pens in either thermoneutral (TN; 6 pens/group, 25 birds/pen) or heat stress conditions (HS, 30°C from 32 to 42 D; 6 pens/group, 25 birds/pen). At 42 D of age, 15 randomly chosen birds/treatment/temperature were slaughtered and the pectoral muscle (PM) was removed for analyses. Data were analyzed by GLM in a 3 × 2 factorial design. In ovo treatment had no effect on PM weight, pH, water-holding capacity, and shear force. GOS and S birds had lighter (L*, P < 0.01) PM than C group, whereas the latter showed a higher (P < 0.05) yellowness index (b*) compared to S group. Proximate composition, cholesterol, and intramuscular collagen properties were not affected by treatment. As for fatty acid composition, only total polyunsaturated fatty acids (PUFA) content and n-6 PUFA were slightly lower in GOS group compared to S. Heat stress had a detrimental effect on PM weight (P < 0.01) and increased meat pH (P < 0.01). PM from HS chickens was darker with a higher b* index (P < 0.05) and had a higher (P < 0.01) lipid content and a lower (P < 0.05) total collagen amount. Total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and PUFA were similar among groups. Significant interactions between factors were found for fatty acid composition: GOS decreased (P < 0.01) SFA and increased (P < 0.05) MUFA contents in HS birds. In conclusion, in ovo injection of GOS could mitigate the detrimental effect of heat stress on some meat quality traits
Effect of galactooligosaccharides delivered in ovo on meat quality traits of broiler chickens exposed to heat stress
A study was carried out to evaluate meat quality traits in fast-growing chickens stimulated in ovo with trans-galactoolighosaccarides (GOS) and exposed to heat stress. On day 12 of egg incubation, 3,000 fertilized eggs (Ross 308) were divided into prebiotic group (GOS) injected with 3.5 mg GOS/egg, saline group (S) injected with physiological saline, and control group (C) uninjected. After hatching, 900 male chicks (300 chicks/treatment) were reared in floor pens in either thermoneutral (TN; 6 pens/group, 25 birds/pen) or heat stress conditions (HS, 30°C from 32 to 42 D; 6 pens/group, 25 birds/pen). At 42 D of age, 15 randomly chosen birds/treatment/temperature were slaughtered and the pectoral muscle (PM) was removed for analyses. Data were analyzed by GLM in a 3 × 2 factorial design. In ovo treatment had no effect on PM weight, pH, water-holding capacity, and shear force. GOS and S birds had lighter (L*, P < 0.01) PM than C group, whereas the latter showed a higher (P < 0.05) yellowness index (b*) compared to S group. Proximate composition, cholesterol, and intramuscular collagen properties were not affected by treatment. As for fatty acid composition, only total polyunsaturated fatty acids (PUFA) content and n-6 PUFA were slightly lower in GOS group compared to S. Heat stress had a detrimental effect on PM weight (P < 0.01) and increased meat pH (P < 0.01). PM from HS chickens was darker with a higher b* index (P < 0.05) and had a higher (P < 0.01) lipid content and a lower (P < 0.05) total collagen amount. Total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and PUFA were similar among groups. Significant interactions between factors were found for fatty acid composition: GOS decreased (P < 0.01) SFA and increased (P < 0.05) MUFA contents in HS birds. In conclusion, in ovo injection of GOS could mitigate the detrimental effect of heat stress on some meat quality traits
Unraveling the mechanism of the one-pot synthesis of exchange coupled Co-based nano-heterostructures with a high energy product
The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron-cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m-3 by tuning the Co content in the metal precursor
Defect-Engineering by Solvent Mediated Mild Oxidation as a Tool to Induce Exchange Bias in Metal Doped Ferrites
The crystal site occupancy of different divalent ions and the induction of lattice defects represent an additional tool for modifying the intrinsic magnetic properties of spinel ferrites nanoparticles. Here, the relevance of the lattice defects is demonstrated in the appearance of exchange‐bias and in the improvement of the magnetic properties of doped ferrites of 20 nm, obtained from the mild oxidation of core@shell (wüstite@ferrite) nanoparticles. Three types of nanoparticles (Fe0.95O@Fe3O4, [email protected] and [email protected]) are oxidized. As a result, the core@shell morphology is removed and transformed in a spinel‐like nanoparticle, through a topotactic transformation. This study shows that most of the induced defects in these nanoparticles and their magnetic properties are driven by the inability of the Co(II) ions at the octahedral sites to migrate to tetrahedral sites, at the chosen mild oxidation temperature. In addition, the appearance of crystal defects and antiphase boundaries improves the magnetic properties of the starting compounds and leads to the appearance of exchange bias at room temperature. These results highlight the validity of the proposed method to impose novel magnetic characteristics in the technologically relevant class of nanomaterials such as spinel ferrites, expanding their potential exploitation in several application fields
Star-shaped Magnetic-plasmonic Au@Fe3O4 nano-heterostructures for photothermal therapy
Here, we synthesize a Au@Fe3O4 core@shell system with a highly uniform unprecedented star-like shell morphology with combined plasmonic and magnetic properties. An advanced electron microscopy characterization allows assessing the multifaceted nature of the Au core and its role in the growth of the peculiar epitaxial star-like shell with excellent crystallinity and homogeneity. Magnetometry and magneto-optical spectroscopy revealed a pure magnetite shell, with a superior saturation magnetization compared to similar Au@Fe3O4 heterostructures reported in the literature, which is ascribed to the star-like morphology, as well as to the large thickness of the shell. Of note, Au@Fe3O4 nanostar-loaded cancer cells displayed magneto-mechanical stress under a low frequency external alternating magnetic field (few tens of Hz). On the other hand, such a uniform, homogeneous, and thick magnetite shell enables the shift of the plasmonic resonance of the Au core to 640 nm, which is the largest red shift achievable in Au@Fe3O4 homogeneous core@shell systems, prompting application in photothermal therapy and optical imaging in the first biologically transparent window. Preliminary experiments performing irradiation of a stable water suspension of the nanostar and Au@Fe3O4-loaded cancer cell culture suspension at 658 nm confirmed their optical response and their suitability for photothermal therapy. The outstanding features of the prepared system can be thus potentially exploited as a multifunctional platform for magnetic-plasmonic applications
Filamin A Binds to CCR2B and Regulates Its Internalization
The chemokine (C-C motif) receptor 2B (CCR2B) is one of the two isoforms of the receptor for monocyte chemoattractant protein-1 (CCL2), the major chemoattractant for monocytes, involved in an array of chronic inflammatory diseases. Employing the yeast two-hybrid system, we identified the actin-binding protein filamin A (FLNa) as a protein that associates with the carboxyl-terminal tail of CCR2B. Co-immunoprecipitation experiments and in vitro pull down assays demonstrated that FLNa binds constitutively to CCR2B. The colocalization of endogenous CCR2B and filamin A was detected at the surface and in internalized vesicles of THP-1 cells. In addition, CCR2B and FLNa were colocalized in lamellipodia structures of CCR2B-expressing A7 cells. Expression of the receptor in filamin-deficient M2 cells together with siRNA experiments knocking down FLNa in HEK293 cells, demonstrated that lack of FLNa delays the internalization of the receptor. Furthermore, depletion of FLNa in THP-1 monocytes by RNA interference reduced the migration of cells in response to MCP-1. Therefore, FLNa emerges as an important protein for controlling the internalization and spatial localization of the CCR2B receptor in different dynamic membrane structures
The hERG channel is dependent upon the Hsp90α isoform for maturation and trafficking
Heat shock protein 90 (Hsp90) has emerged as a promising therapeutic target for the treatment of cancer. Several Hsp90 inhibitors have entered clinical trials. However, some toxicological detriments have arisen, such as cardiotoxicity resulting from hERG inhibition following the administration of Hsp90 inhibitors. We sought to investigate this toxicity as hERG has been previously reported as a client protein that depends upon Hsp90 for its maturation and functional trafficking. In this study we show that hERG depends upon a single Hsp90 isoform. hERG preferentially co-immunoprecipitated with Hsp90α and genetic knockdown of Hsp90α, but not Hsp90β, resulted in a trafficking-defective hERG channel. This study demonstrates the importance of delineating the isoform dependence of Hsp90 client proteins and provides rationale for the design of isoform-selective Hsp90 inhibitors that avoid detrimental effect
Unraveling the mechanism of the one-pot synthesis of exchange coupled Co-based nano-heterostructures with a high energy product
The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron–cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m−3 by tuning the Co content in the metal precursor.This work was supported by EU-H2020 AMPHIBIAN Project (no. 720853) and by European Union's Horizon 2020 research and innovation programme under grant agreement no. 823717-ESTEEM3.Peer reviewe
Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner
The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room
- …