18 research outputs found

    SIL1 mutations and clinical spectrum in patients with Marinesco-Sjögren syndrome

    Get PDF
    Marinesco-Sjögren syndrome is a rare autosomal recessive multisystem disorder featuring cerebellar ataxia, early-onset cataracts, chronic myopathy, variable intellectual disability and delayed motor development. More recently, mutations in the SIL1 gene, which encodes an endoplasmic reticulum resident co-chaperone, were identified as the main cause of Marinesco-Sjögren syndrome. Here we describe the results of SIL1 mutation analysis in 62 patients presenting with early-onset ataxia, cataracts and myopathy or combinations of at least two of these. We obtained a mutation detection rate of 60% (15/25) among patients with the characteristic Marinesco-Sjögren syndrome triad (ataxia, cataracts, myopathy) whereas the detection rate in the group of patients with more variable phenotypic presentation was below 3% (1/37). We report 16 unrelated families with a total of 19 different SIL1 mutations. Among these mutations are 15 previously unreported changes, including single- and multi-exon deletions. Based on data from our screening cohort and data compiled from the literature we found that SIL1 mutations are invariably associated with the combination of a cerebellar syndrome and chronic myopathy. Cataracts were observed in all patients beyond the age of 7 years, but might be missing in infants. Six patients with SIL1 mutations had no intellectual disability, extending the known wide range of cognitive capabilities in Marinesco-Sjögren syndrome to include normal intelligence. Modestly constant features were somatic growth retardation, skeletal abnormalities and pyramidal tract signs. Examination of mutant SIL1 expression in cultured patient lymphoblasts suggested that SIL1 mutations result in severely reduced SIL1 protein levels irrespective of the type and position of mutations. Our data broaden the SIL1 mutation spectrum and confirm that SIL1 is the major Marinesco-Sjögren syndrome gene. SIL1 patients usually present with the characteristic triad but cataracts might be missing in young children. As cognitive impairment is not obligatory, patients without intellectual disability but a Marinesco-Sjögren syndrome-compatible phenotype should receive SIL1 mutation analysis. Despite allelic heterogeneity and many families with private mutations, the phenotype related to SIL1 mutations is relatively homogenous. Based on SIL1 expression studies we speculate that this may arise from a uniform effect of different mutations on protein expressio

    Mowat-Wilson syndrome : growth charts

    Get PDF
    Background Mowat-Wilson syndrome (MWS; OMIM #235730) is a genetic condition caused by heterozygous mutations or deletions of theZEB2gene. It is characterized by moderate-severe intellectual disability, epilepsy, Hirschsprung disease and multiple organ malformations of which congenital heart defects and urogenital anomalies are the most frequent ones. To date, a clear description of the physical development of MWS patients does not exist. The aim of this study is to provide up-to-date growth charts specific for infants and children with MWS. Charts for males and females aged from 0 to 16 years were generated using a total of 2865 measurements from 99 MWS patients of different ancestries. All data were collected through extensive collaborations with the Italian MWS association (AIMW) and the MWS Foundation. The GAMLSS package for the R statistical computing software was used to model the growth charts. Height, weight, body mass index (BMI) and head circumference were compared to those from standard international growth charts for healthy children. Results In newborns, weight and length were distributed as in the general population, while head circumference was slightly smaller, with an average below the 30th centile. Up to the age of 7 years, weight and height distribution was shifted to slightly lower values than in the general population; after that, the difference increased further, with 50% of the affected children below the 5th centile of the general population. BMI distribution was similar to that of non-affected children until the age of 7 years, at which point values in MWS children increased with a less steep slope, particularly in males. Microcephaly was sometimes present at birth, but in most cases it developed gradually during infancy; many children had a small head circumference, between the 3rd and the 10th centile, rather than being truly microcephalic (at least 2 SD below the mean). Most patients were of slender build. Conclusions These charts contribute to the understanding of the natural history of MWS and should assist pediatricians and other caregivers in providing optimal care to MWS individuals who show problems related to physical growth. This is the first study on growth in patients with MWS.Peer reviewe

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF
    Mowat-Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype-phenotype correlations of MWS.MethodsIn a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations.ResultsAll anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluation of MWS to date, we define its clinical evolution occurring with age and derive suggestions for patient management. Furthermore, we observe that its severity correlates with the kind of ZEB2 variation involved, ranging from ZEB2 locus deletions, associated with severe phenotypes, to rare nonmissense intragenic mutations predicted to preserve some ZEB2 protein functionality, accompanying milder clinical presentations.ConclusionKnowledge of the phenotypic spectrum of MWS and its correlation with the genotype will improve its detection rate and the prediction of its features, thus improving patient care.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.221

    Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care

    Get PDF
    Purpose: Mowat–Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype–phenotype correlations of MWS. Methods: In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations. Results: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluati

    „Transitionssprechstunde“ – ein psychosoziales Unterstützungsformat für psychisch be-lastete junge Menschen mit ADHS.

    No full text
    Kelch B, Koch-Stoecker S, Kolip P, Muschke F. „Transitionssprechstunde“ – ein psychosoziales Unterstützungsformat für psychisch be-lastete junge Menschen mit ADHS. In: Hämel K, Röhnsch G, eds. Förderung von Gesundheit und Partizipation bei chronischer Krankheit und Pflegebedürf-tigkeit im Lebensverlauf . Weinheim: Beltz Juventa; 2022: 60-82

    Mutations of the Ephrin-B1 Gene Cause Craniofrontonasal Syndrome

    Get PDF
    Craniofrontonasal syndrome (CFNS) is an X-linked craniofacial disorder with an unusual manifestation pattern, in which affected females show multiple skeletal malformations, whereas the genetic defect causes no or only mild abnormalities in male carriers. Recently, we have mapped a gene for CFNS in the pericentromeric region of the X chromosome that contains the EFNB1 gene, which encodes the ephrin-B1 ligand for Eph receptors. Since Efnb1 mutant mice display a spectrum of malformations and an unusual inheritance reminiscent of CFNS, we analyzed the EFNB1 gene in three families with CFNS. In one family, a deletion of exons 2–5 was identified in an obligate carrier male, his mildly affected brother, and in the affected females. In the two other families, missense mutations in EFNB1 were detected that lead to amino acid exchanges P54L and T111I. Both mutations are located in multimerization and receptor-interaction motifs found within the ephrin-B1 extracellular domain. In all cases, mutations were found consistently in obligate male carriers, clinically affected males, and affected heterozygous females. We conclude that mutations in EFNB1 cause CFNS

    Multiple Small Supernumerary Marker Chromosomes Resulting from Maternal Meiosis I or II Errors

    No full text
    We present 2 cases with multiple de novo supernumerary marker chromosomes (sSMCs), each derived from a different chromosome. In a prenatal case, we found mosaicism for an sSMC(4), sSMC(6), sSMC(9), sSMC(14) and sSMC(22), while a postnatal case had an sSMC(4), sSMC(8) and an sSMC(11). SNP-marker segregation indicated that the sSMC(4) resulted from a maternal meiosis II error in the prenatal case. Segregation of short tandem repeat markers on the sSMC(8) was consistent with a maternal meiosis I error in the postnatal case. In the latter, a boy with developmental/psychomotor delay, autism, hyperactivity, speech delay, and hypotonia, the sSMC(8) was present at the highest frequency in blood. By comparison to other patients with a corresponding duplication, a minimal region of overlap for the phenotype was identified, with CHRNB3 and CHRNA6 as dosage-sensitive candidate genes. These genes encode subunits of nicotinic acetylcholine receptors (nAChRs). We propose that overproduction of these subunits leads to perturbed component stoichiometries with dominant negative effects on the function of nAChRs, as was shown by others in vitro. With the limitation that in each case only one sSMC could be studied, our findings demonstrate that different meiotic errors lead to multiple sSMCs. We relate our findings to age-related aneuploidy in female meiosis and propose that predivision sister-chromatid separation during meiosis I or II, or both, may generate multiple sSMCs
    corecore