23 research outputs found

    Metrics of Growth Habit Derived from the 3D Tree Point Cloud Used for Species Determination-A New Approach in Botanical Taxonomy Tested on Dragon Tree Group Example

    Get PDF
    Detailed, three-dimensional modeling of trees is a new approach in botanical taxonomy. Representations of individual trees are a prerequisite for accurate assessments of tree growth and morphological metronomy. This study tests the abilities of 3D modeling of trees to determine the various metrics of growth habit and compare morphological differences. The study included four species of the genus Dracaena: D. draco, D. cinnabari, D. ombet, and D. serrulata. Forty-nine 3D tree point clouds were created, and their morphological metrics were derived and compared. Our results indicate the possible application of 3D tree point clouds to dendrological taxonomy. Basic metrics of growth habit and coefficients derived from the 3D point clouds developed in the present study enable the statistical evaluation of differences among dragon tree species.O

    Seed Viability and Potential Germination Rate of Nine Endemic Boswellia Taxa (Burseraceae) from Socotra Island (Yemen)

    Get PDF
    The endemic Boswellia species (Burseraceae) on Socotra Island (Yemen) are of great local significance due to their various local ethnobotanical uses. However, despite the fact that these trees are endangered, little is known about their biology. We tested seed germination rates in controlled experiments (trials of 21 days) for two subsequent years and for nine endemic taxa of Boswellia occurring on Socotra Island. For this, seeds were collected island-wide from a wide range of localities and for several populations per species. We observed differences in germination among Boswellia species, among species and localities and among both years, which indicates that the development of seeds is strongly affected by external ecological factors. Although we noted a large variation in seed germination (relatively high in Boswellia socotrana), and half of the species showed relatively low mean daily germination, our study indicated that all endangered endemic Frankincense Tree taxa of Socotra harbor the potential for in situ conservation through recruitment, given that known impacts can be reduced in local replantation areas (e.g., grazing).O

    Climate change effects on the potential distribution of the endemic Commiphora species (Burseraceae) on the island of Socotra

    Get PDF
    The Socotra Archipelago (Yemen) is an interesting biodiversity hotspot, with a significant proportion of endemic species that have evolved to survive in an arid subtropical environment, inscribed as a World Heritage Site by UNESCO. The terrestrial ecosystems of Socotra face several threats, including climate change, overgrazing and soil degradation. Socotra Island has four endemic species of the genus Commiphora (Burseraceae). Little is known about their local distribution and ecology, yet these trees could be useful indicator species. Our study focuses on the distribution and niche characterisation of the four endemic Commiphora species of Socotra and how climate change may affect them. The aim is to improve insights into their habitats and to provide an essential basis for future local management plans and ecological restoration. We compared the current distribution with the forecasted potential distribution under a CMIP6 (Coupled Model Intercomparison Project) climate scenario, allowing us to define target conservation areas and assess potential local extinction risks. To achieve this, we collected distribution data in the field throughout Socotra Island, covering the current distribution ranges of the four species. To assess the potential distribution of these species, we applied three models (GAM, MaxEnt, RandomForest) using bioclimatic, topographic and soil variables. Forecasts under a climate change scenario were made using bioclimatic variables from the CMCC-CESM2 climate model for two different socioeconomic pathways. The distribution of three endemic Socotran Commiphora is mainly correlated to clay content in the soil and winter precipitation, while C. socotrana is affected by seasonal precipitation and temperature. Under different potential future climate scenarios, the distribution of C. ornifolia is predicted to remain stable or increase, while C. parvifolia distribution could increase, yet C. planifrons and C. socotrana are predicted to undergo a strong reduction of suitable areas and an upward shift in the mountains. Our results highlight that it is essential to conserve the unique terrestrial ecosystems in Socotra and to preserve these endemic trees which have a wide range of ecosystem services. Updates on the predicted extinction risk assessment are fundamental to understand conservation priorities and strategize future actions to ensure the persistence of Socotran myrrh trees and other endangered endemic tree taxa on the island

    Global Geographic Distribution and Host Range of Fusarium circinatum, the Causal Agent of Pine Pitch Canker

    Get PDF
    Funding: This study was financially supported by COST Action FP1406 (PINESTRENGTH), the Estonian Science Foundation grant PSG136, the Forestry Commission, United Kingdom, the Phytophthora Research Centre Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000453, a project co-financed by the European Regional Development Fund. ANSES is supported by a grant managed by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” programme (ANR-11-LABX-0002-01, Laboratory of ExcellenceARBRE). SW was partly supported by BBSRC Grant reference BB/L012251/1 “Promoting resilience of UK tree species to novel pests & pathogens: ecological & evolutionary solutions (PROTREE)” jointly funded by BBSRC, Defra, ESRC, the Forestry Commission, NERC and the Scottish Government, under the Tree Health and Plant Biosecurity Initiative. Annual surveys in Switzerland were financially supported by the Swiss Federal Office for the Environment FOEN. Acknowledgments: Andrea Kunova and Cristina Pizzatti are acknowledged for the assistance in the sampling. Thanks are due to Dina Ribeiro and Helena Marques from ICNF-Portuguese Forest Authority for providing location coordinates. We thank three anonymous reviwers for valuable corrections and suggestions.Peer reviewedPublisher PD

    Gymnocalycium campestre

    No full text

    Threat Degree Classification According to Habitat Quality: A Case Study from the Czech Republic

    No full text
    Important sources of information in the field of nature protection are red lists, which define the degree of threat to individual species. In practice, an assessment of the quality of the habitats in which a species occurs is used to a very limited extent in the preparation of red lists of vascular plants. At the same time, this parameter is usually essential to determine their degree of threat. At present, habitat quality data are available for the territory of the Czech Republic; these were obtained during Natura 2000 habitat mapping in the years 2000–2019. In this paper we propose the use of habitat quality data to determine the degree of threat to selected species of vascular plants and to compile a national red list. Nine plant species from three habitat types were selected for this study: meadows and wetland habitats in the alluvium of large rivers (Cardamine matthioli Moretti, Gratiola officinalis L., Teucrium scordium L.), fen habitats (Carex appropinquata Schumach., C. cespitosa L., C. lepidocarpa Tausch) and ecotone shrub habitats (Rosa agrestis Savi, R. micrantha Borrer ex Sm., R. spinosissima L.). For these species, the quality of the habitats in which they occur was analysed and grid maps were created, which present (1) the level of knowledge of habitat quality and (2) the average habitat quality. The results were compared with the degree of threat in the current national red list. Habitat quality analysis should also be used in the future to detect threatened species, which today are outside the red list and this assessment may be useful in compiling another updated red list of vascular plants of the Czech Republic

    The potential global distribution of an emerging forest pathogen, Lecanosticta acicola, under a changing climate

    Get PDF
    Brown spot needle blight (BSNB), caused by Lecanosticta acicola (Thüm.) Syd., is an emerging forest disease of Pinus species originating from North America and introduced to Europe and Asia. Severity and spread of the disease has increased in the last two decades in North America and Europe as a response to climate change. No modeling work on spread, severity, climatic suitability, or potential distribution has been done for this important emerging pathogen. This study utilizes a global dataset of 2,970 independent observations of L. acicola presence and absence from the geodatabase, together with Pinus spp. distribution data and 44 independent climatic and environmental variables. The objectives were to (1) identify which bioclimatic and environmental variables are most influential in the distribution of L. acicola(2) compare four modeling approaches to determine which modeling method best fits the data(3) examine the realized distribution of the pathogen under climatic conditions in the reference period (1971–2000)and (4) predict the potential future global distribution of the pathogen under various climate change scenarios. These objectives were achieved using a species distribution modeling. Four modeling approaches were tested: regression-based model, individual classification trees, bagging with three different base learners, and random forest. Altogether, eight models were developed. An ensemble of the three best models was used to make predictions for the potential distribution of L. acicola: bagging with random tree, bagging with logistic model trees, and random forest. Performance of the model ensemble was very good, with high precision (0.87) and very high AUC (0.94). The potential distribution of L. acicola was computed for five global climate models (GCM) and three combined pathways of Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathway (SSP-RCP): SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5. The results of the five GCMs were averaged on combined SSP-RCP (median) per 30-year period. Eight of 44 studied factors determined as most important in explaining L. acicola distribution were included in the models: mean diurnal temperature range, mean temperature of wettest quarter, precipitation of warmest quarter, precipitation seasonality, moisture in upper portion of soil column of wettest quarter, surface downwelling longwave radiation of driest quarter, surface downwelling shortwave radiation of warmest quarter and elevation. The actual distribution of L. acicola in the reference period 1971–2000 covered 5.9% of Pinus spp. area globally. However, the model ensemble predicted potential distribution of L. acicola to cover an average of 58.2% of Pinus species global cover in the reference period. Different climate change scenarios (five GCMs, three SSP-RCPs) showed a positive trend in possible range expansion of L. acicola for the period 1971–2100. The average model predictions toward the end of the century showed the potential distribution of L. acicola rising to 62.2, 61.9, 60.3% of Pinus spp. area for SSP1-RCP2.6, SSP2-RCP4.5, SSP5-RCP8.5, respectively. However, the 95% confidence interval encompassed 35.7–82.3% of global Pinus spp. area in the period 1971–2000 and 33.6–85.8% in the period 2071–2100. It was found that SSP-RCPs had a little effect on variability of BSNB potential distribution (60.3–62.2% in the period 2071–2100 for medium prediction). In contrast, GCMs had vast impact on the potential distribution of L. acicola (33.6–85.8% of global pines area). The maps of potential distribution of BSNB will assist forest managers in considering the risk of BSNB. The results will allow practitioners and policymakers to focus surveillance methods and implement appropriate management plans
    corecore