24 research outputs found

    Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives

    Get PDF
    Background: Air pollution, which represents a major environmental risk to human health, comprises a complex mixture of compounds where only little is known about its specific toxicities. Objectives: This study examined the specific toxicities associated with ambient air pollutant mixtures with respect to gas/particle partitioning, particulate matter (PM) size, pollutant polarity and bioaccessibility from PM, and evaluated the contribution of PAHs and their oxygenated and nitrated derivatives (OPAHs, NPAHs). Methods: Air samples (gas phase, PM10 and size- segregated PM), were collected at urban (in winter and summer) and background (winter) sites in the Czech Republic. The total and bioaccessible concentrations were addressed using organic solvent extraction and simulated lung fluid extraction, respectively. Organic extracts were also further fractionated according to polarity. Aryl hydrocarbon receptor (AhR)-mediated activity, anti-/estro- genicity, anti-/androgenicity, thyroid receptor (TR)-mediated activity and cytotoxicity for bronchial cells were determined by human cell-based in vitro bioassays. The contribution of studied compounds to observed effects was assessed by both modelling and reconstructing the mixtures. Results: Significant effects were detected in the sub-micrometre size fraction of PM (estrogenicity, androgenicity, TR- and AhR-mediated activities) and in the gas phase (TR-mediated activity, antiandrogenicity). Compounds interacting with TR showed high bioaccessibility to simulated lung fluid. Relatively lower bioaccessibility was observed for estrogenicity and AhR-mediated activity. However, the toxicity testing of reconstructed mixtures revealed that the targeted pollutants are not the main contributors, except for urban PM air pollution in winter, where they accounted for 5-88% of several effects detected in the original complex environmental samples. Discussion: Studied toxicities were mostly driven by polar compounds largely attributed to the easily inhalable PM1, which is of high relevance for human health risk assessment. Except of parent PAHs in some cases, the targeted compounds contributed to the detected effects mostly to a relatively low extent implying huge data gaps in terms of endocrine disruptive potencies of targeted substances and the significance of other polar compounds present in ambient air

    Temporal Trends of Persistent Organic Pollutants across Africa after a Decade of MONET Passive Air Sampling

    Get PDF
    The Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants (POPs) was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After a decade of passive air monitoring (2008-2019), MONET is the first network to produce sufficient data for the analysis of long-term temporal trends of POPs in the African atmosphere. This study reports concentrations of 20 POPs (aldrin, chlordane, chlordecone, DDT, dieldrin, endrin, endosulfan, HBCDD, HCB, HCHs, heptachlor, hexabromobiphenyl, mirex, PBDEs, PCBs, PCDDs, PCDFs, PeCB, PFOA, and PFOS) monitored in 9 countries (Congo, Ghana, Ethiopia, Kenya, Mali, Mauritius, Morocco, Nigeria, and Sudan). As of January 1, 2019, concentrations were in the following ranges (pg/m(3)): 0.5-37.7 (Sigma 6PCB), 0.006-0.724 (Sigma 17PCDD/F), 0.05-5.5 (Sigma 9PBDE), 0.6-11.3 (BDE 209), 0.1-1.8 (Sigma 3HBCDD), 1.8-138 (Sigma 6DDT), 0.1-24.3 (Sigma(3)endosulfan), 0.6-14.6 (Sigma 4HCH), 9.1-26.4 (HCB), 13.8-18.2 (PeCB). Temporal trends indicate that concentrations of many POPs (PCBs, DDT, HCHs, endosulfan) have declined significantly over the past 10 years, though the rate was slow at some sites. Concentrations of other POPs such as PCDD/Fs and PBDEs have not changed significantly over the past decade and are in fact increasing at some sites, attributed to the prevalence of open burning of waste (particularly e-waste) across Africa. Modeled airflow back-trajectories suggest that the elevated concentrations at some sites are primarily due to sustained local emissions, while the low concentrations measured at Mt. Kenya represent the continental background level and are primarily influenced by long-range transport

    A comprehensive assessment of endocrine-disrupting chemicals in an Indian food basket: Levels, dietary intakes, and comparison with

    Get PDF
    Endocrine-disrupting chemicals (EDCs) in diet are a health concern and their monitoring in food has been introduced in the European Union. In developing countries, EDC dietary exposure data are scarce, especially from areas perceived as pollution hotspots, including industrialized countries like India. Several persistent organic pollutants (POPs) act as EDCs and pose a pressure to human health mainly through dietary exposure. In the present study, a range of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins and furans were measured in several food items collected from Indian urban (Delhi) and peri-urban (Dehradun) areas. Food basket contamination data were used to estimate EDC dietary exposure and compare it with that of the average European population estimated from available monitoring data. All the target contaminants were found in most food items, especially in dairies and meat products. OCPs were the main contributers to the measured EDC contamination. Food supplied to Delhi's markets had higher EDC contamination than that supplied to the peri-urban market in Dehradun. Despite lax compliance and control measures, Indian dietary exposure of OCPs and PBDEs were comparable with that of Europe and were lower for PCBs and dioxins. Higher meat consumption in Europe only partly explained this pattern which was driven also by the higher EDC residues in some European food items. A substantial part of endocrine disrupting potential in the diet derives from food and animal feeds internationally traded between developed and developing countries. With increasingly globalized food systems, internationally harmonized policies on EDC content in food can lead to better protection of health in both these contexts

    Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides (CUPs) across three agricultural areas of South Africa

    Get PDF
    For decades pesticides have been used in agriculture, however, the occurrence of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) is poorly understood in Africa. This study investigates air concentrations of OCPs and CUPs in three South African agricultural areas, their spatial/seasonal variations and mixture profiles. Between 2017 and 2018, 54 polyurethane foam-disks passive air-samplers (PUF-PAS) were positioned in three agricultural areas of the Western Cape, producing mainly apples, table grapes and wheat. Within areas, 25 CUPs were measured at two sites (farm and village), and 27 OCPs at one site (farm). Kruskal-Wallis tests investigated area differences in OCPs concentrations, and linear mixed-effect models studied differences in CUPs concentrations between areas, sites and sampling rounds

    Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons in Ambient Air-Levels, Phase Partitioning, Mass Size Distributions, and Inhalation Bioaccessibility

    Get PDF
    Among the nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are some of the most hazardous substances to public health, mainly because of their carcinogenicity and oxidative potential. Despite these concerns, the concentrations and fate of NPAHs and OPAHs in the atmospheric environment are largely unknown. Ambient air concentrations of 18 NPAHs, 5 quinones, and 5 other OPAHs were determined at two urban and one regional background sites in central Europe. At one of the urban sites, the total (gas and particulate) concentrations of Sigma(10)OPAHs were 10.0 +/- 9.2 ng/m(3) in winter and 3.5 +/- 1.6 ng/m(3) in summer. The gradient to the regional background site exceeded 1 order of magnitude. Sigma(18)NPAH concentrations were typically 1 order of magnitude lower than OPAHs. Among OPAHs, 9-fluorenone and (9,10)-anthraquinone were the most abundant species, accompanied by benzanthrone in winter. (9,10)-Anthraquinone represented two-thirds of quinones. We found that a large fraction of the target substance particulate mass was carried by submicrometer particles. The derived inhalation bioaccessibility in the PM10 size fraction is found to be approximate to 5% of the total ambient concentration of OPAHs and up to approximate to 2% for NPAHs. For 9-fluorenone and (9,10)-anthraquinone, up to 86 and 18%, respectively, were found at the rural site. Our results indicate that water solubility could function as a limiting factor for bioaccessibility of inhaled particulate NPAHs and OPAHs, without considerable effect of surfactant lipids and proteins in the lung lining fluid

    NPAHs and OPAHs in the atmosphere of two central European cities: Seasonality, urban-to-background gradients, cancer risks and gas-to-particle partitioning

    Get PDF
    Derivatives of polycyclic aromatic hydrocarbons (PAHs) such as nitrated- and oxygenated-PAHs (NPAHs and OPAHs) could be even more toxic and harmful for the environment and humans than PAHs. We assessed the spatial and seasonal variations of NPAHs and OPAHs atmospheric levels, their cancer risks and their gas-to-particle partitioning. To this end, about 250 samples of fine particulate matter (PM2.5) and 50 gaseous samples were collected in 2017 in central Europe in the cities of Brno and Ljubljana (two traffic and two urban background sites) as well as one rural site. The average particulate concentrations were ranging from below limit of quantification to 593 pg m-3 for Σ9NPAHs and from 1.64 to 4330 pg m-3 for Σ11OPAHs, with significantly higher concentrations in winter compared to summer. In winter, the particulate levels of NPAHs and OPAHs were higher at the traffic site compared to the urban background site in Brno while the opposite was found in Ljubljana. NPAHs and OPAHs particulate levels were influenced by the meteorological parameters and co-varied with several air pollutants. The significance of secondary formation on the occurrence of some NPAHs and OPAHs is indicated. In winter, 27-47% of samples collected at all sites were above the acceptable lifetime carcinogenic risk. The gas-particle partitioning of NPAHs and OPAHs was influenced by their physico-chemical properties, the season and the site-specific aerosol composition. Three NPAHs and five OPAHs had higher particulate mass fractions at the traffic site, suggesting they could be primarily emitted as particles from vehicle traffic and subsequently partitioning to the gas phase along air transport. This study underlines the importance of inclusion of the gas phase in addition to the particulate phase when assessing the atmospheric fate of polycyclic aromatic compounds and also when assessing the related health risk.This project was supported by the European Union's H2020 Framework Programme (ICARUS project) under grant agreement No – 690105, by the Czech Science Foundation (#P503 20-07117S) and by the RECETOX (LM2018121) and ACTRIS-CZ (LM2018122) research infrastructures funded by the Czech Ministry of Education, Youth and Sports of the Czech Republic and the European Structural and Investment Funds (CZ.02.1.01/0.0/0.0/16_013/0001761 and CZ.02.1.01/0.0/0.0/16_013/0001315). Funding of the Slovenian Agency of research through a programme P1-0143 is acknowledged. H2020 ERA-PLANET (No. 689443) iGOSP project is also acknowledged.S

    Widespread pesticide distribution in the European atmosphere questions their degradability in air

    Get PDF
    Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved

    Comparability of long-term temporal trends of POPs from co-located active and passive air monitoring networks in Europe

    No full text
    The comparability of data from active (ACT) and passive sampling (PAS) of persistent organic pollutants (POPs) in air is hindered by uncertainties related to the derivation of sampling rates and concentrations, as well as differences in the duration, volume and frequency of sampling. Although data from ACT have been used extensively in short-term PAS calibration studies, no attempts have been made to evaluate the comparability of long-term trends calculated from PAS to established ACT trends. This is crucial, as continuous long-term ACT is unfeasible in most regions of the world. To address these challenges, we calculated and compared trends for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) at the six sites in Europe with at least 5 years of co-located ACT and PAS data (2012–2016): Birkenes, Košetice, Pallas, Råö, Stórhöfði and Zeppelin. Strong agreement of ACT and PAS trends was observed for most OCPs and PCBs. Apart from two PCBs at Stórhöfði, all pairs of ACT and PAS trends followed the same direction. However, differences in the magnitude, significance and confidence intervals of their slopes were observed for some compounds and were primarily attributed to the short duration of the PAS time series. Despite some limitations, our results suggest that the comparability of ACT and PAS POP trends will continue to improve with additional years of data. This study confirms the suitability of PAS for the calculation of long-term POP trends in air, and highlights the importance of continuous sampling at established monitoring sites with consistent analytical methods.ISSN:2050-7887ISSN:2050-789
    corecore