15,664 research outputs found

    Optical Continuum and Emission-Line Variability of Seyfert 1 Galaxies

    Get PDF
    We present the light curves obtained during an eight-year program of optical spectroscopic monitoring of nine Seyfert 1 galaxies: 3C 120, Akn 120, Mrk 79, Mrk 110, Mrk 335, Mrk 509, Mrk 590, Mrk 704, and Mrk 817. All objects show significant variability in both the continuum and emission-line fluxes. We use cross-correlation analysis to derive the sizes of the broad Hbeta-emitting regions based on emission-line time delays, or lags. We successfully measure time delays for eight of the nine sources, and find values ranging from about two weeks to a little over two months. Combining the measured lags and widths of the variable parts of the emission lines allows us to make virial mass estimates for the active nucleus in each galaxy. The virial masses are in the range 10^{7-8} solar masses.Comment: 24 pages, 16 figures. Accepted for publication in Ap

    Reverberation Mapping and the Physics of Active Galactic Nuclei

    Get PDF
    Reverberation-mapping campaigns have revolutionized our understanding of AGN. They have allowed the direct determination of the broad-line region size, enabled mapping of the gas distribution around the central black hole, and are starting to resolve the continuum source structure. This review describes the recent and successful campaigns of the International AGN Watch consortium, outlines the theoretical background of reverberation mapping and the calculation of transfer functions, and addresses the fundamental difficulties of such experiments. It shows that such large-scale experiments have resulted in a ``new BLR'' which is considerably different from the one we knew just ten years ago. We discuss in some detail the more important new results, including the luminosity-size-mass relationship for AGN, and suggest ways to proceed in the near future.Comment: Review article to appear in Astronomical Time Series, Proceedings of the Wise Observatory 25th Ann. Symposium. 24 pages including 7 figure

    Conceptual mechanization studies for a horizon definition spacecraft structures and thermal subsystem

    Get PDF
    Conceptual mechanization for horizon definition spacecraft structures and thermal subsystem - spin-stabilized, hexagonal cylinder for launch of two-stage Improved Delta /DSV-3N

    MUSE observations of a changing-look AGN I: The re-appearance of the broad emission lines

    Get PDF
    Optical changing-look Active Galactic Nuclei (AGN) are a class of sources that change type within a short timescale of years or decades. This change is characterised by the appearance or disappearance of broad emission lines, often associated with dramatic AGN continuum flux changes that are orders of magnitude larger than those expected from typical AGN variability. In this work we study for the first time the host galaxy of a changing-look AGN, Mrk 590, using high spatial resolution optical and near-infrared observations. We discover that after ~ 10 yr absence, the optical broad emission lines of Mrk 590 have reappeared. The AGN optical continuum flux however, is still ~ 10 times lower than that observed during the most luminous state in the 1990s. The host galaxy shows a 4.5 kpc radius star-forming ring with knots of ionised and cold molecular gas emission. Extended ionised and warm molecular gas emission are detected in the nucleus, indicating that there is a reservoir of gas as close as 60 pc from the black hole. We observe a nuclear gas spiral between radii r ~ 0.5 - 2 kpc, which has been suggested as a dynamical mechanism able to drive the necessary gas to fuel AGN. We also discover blue-shifted and high velocity dispersion [O III] emission out to a radius of 1 kpc, tracing a nuclear gas outflow. The gas dynamics in Mrk 590 suggest a complex balance between gas inflow and outflow in the nucleus of the galaxy.Comment: Accepted for publication in MNRA

    Application of Dynamic System Identification to Timber Bridges

    Full text link
    A method of global nondestructive evaluation for identifying local damage and decay in timber beams was developed in previous analytical studies and verified experimentally using simply supported beams in the laboratory. The method employs experimental modal analysis and an algorithm that monitors changes in modal strain energy between the mode shapes of a damaged structure with respect to the undamaged structure. A simple three-girder bridge was built and tested in a laboratory to investigate the capability and limitations of the method for detecting damage in a multimember timber structure. The laboratory tests showed that the method can correctly detect and locate a simulated pocket of decay inflicted at the end of a girder as well as detect a notch removed from the midspan of a girder. The tests showed that the method can correctly detect damage simultaneously at two locations within the bridge, but also that large magnitudes of damage at one location can mask smaller magnitudes of damage at another location. When a calibrated baseline model is used to represent the undamaged state of the bridge, the results show that the method of nondestructive evaluation is able to detect each case of inflicted damage, but with some increase in localization error

    Chiral and herringbone symmetry breaking in water-surface monolayers

    Get PDF
    We report the observation from monolayers of eicosanoic acid in the L′2 phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of their nearest neighbors. In this region we find a structural transition, which we tentatively identify as the rotator-herringbone transition L2d−L2h

    A Spectroscopic and Photometric Study of Short-Timescale Variability in NGC5548

    Get PDF
    Results of a ground-based optical monitoring campaign on NGC5548 in June 1998 are presented. The broad-band fluxes (U,B,V), and the spectrophotometric optical continuum flux F_lambda(5100 A) monotonically decreased in flux while the broad-band R and I fluxes and the integrated emission-line fluxes of Halpha and Hbeta remained constant to within 5%. On June 22, a short continuum flare was detected in the broad band fluxes. It had an amplitude of about ~18% and it lasted only ~90 min. The broad band fluxes and the optical continuum F_lambda(5100 A) appear to vary simultaneously with the EUV variations. No reliable delay was detected for the broad optical emission lines in response to the EUVE variations. Narrow Hbeta emission features predicted as a signature of an accretion disk were not detected during this campaign. However, there is marginal evidence for a faint feature at lambda = 4962 A with FWHM=~6 A redshifted by Delta v = 1100 km/s with respect to Hbeta_narrow.Comment: 12 pages, 7 figures, accepted for publishing in A&

    Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database

    Get PDF
    We present improved black hole masses for 35 active galactic nuclei (AGNs) based on a complete and consistent reanalysis of broad emission-line reverberation-mapping data. From objects with multiple line measurements, we find that the highest precision measure of the virial product is obtained by using the cross-correlation function centroid (as opposed to the cross-correlation function peak) for the time delay and the line dispersion (as opposed to full width half maximum) for the line width and by measuring the line width in the variable part of the spectrum. Accurate line-width measurement depends critically on avoiding contaminating features, in particular the narrow components of the emission lines. We find that the precision (or random component of the error) of reverberation-based black hole mass measurements is typically around 30%, comparable to the precision attained in measurement of black hole masses in quiescent galaxies by gas or stellar dynamical methods. Based on results presented in a companion paper by Onken et al., we provide a zero-point calibration for the reverberation-based black hole mass scale by using the relationship between black hole mass and host-galaxy bulge velocity dispersion. The scatter around this relationship implies that the typical systematic uncertainties in reverberation-based black hole masses are smaller than a factor of three. We present a preliminary version of a mass-luminosity relationship that is much better defined than any previous attempt. Scatter about the mass-luminosity relationship for these AGNs appears to be real and could be correlated with either Eddington ratio or object inclination.Comment: 61 pages, including 8 Tables and 16 Figures. Accepted for publication in The Astrophysical Journa
    corecore