9,859 research outputs found

    Childhood asthma and physical activity: a systematic review with meta-analysis and Graphic Appraisal Tool for Epidemiology assessment

    Get PDF
    PRISMA Items Used in Reporting in the Current Systematic Literature Review. Additional file 1 presents the PRISMA checklist items that were examined, with the draft article page numbers. (DOCX 29 kb

    Some triviality results for quasi-Einstein manifolds and Einstein warped products

    Full text link
    In this paper we prove a number of triviality results for Einstein warped products and quasi-Einstein manifolds using different techniques and under assumptions of various nature. In particular we obtain and exploit gradient estimates for solutions of weighted Poisson-type equations and adaptations to the weighted setting of some Liouville-type theorems.Comment: 15 pages, fixed minor mistakes in Section

    Verification of State/Event Systems by Quotienting

    Get PDF
    A rather new approach towards compositional verification of concurrent systems is the quotient technique, where components are gradually removed from the concurrent system while transforming the specification accordingly. When the intermediate specifications can be kept small using heuristics for minimization, the state explosion problemis avoided and there are already promising experimental results for systems with an interleaving semantics, including real-time systems. This paper extends the quotienting approach to deal with a synchronous framework in the shape of state/event systems. A state/event system is a concurrent system with a set of interdependent components operating synchronously according to stimuli (input events) provided by an environment while producing output events in return for the environment. A compositional modal logic M suitable for expressing general safety and liveness properties subsystems is introduced. A quotient construction for building components from a state/event system into the specification is presented and heuristics for minimizing formulae are proposed. The techniques are demonstrated on an example. The correctness of the techniques are justified by proofs in an appendix

    Study of molecular spin-crossover complex Fe(phen)2(NCS)2 thin films

    Full text link
    We report on the growth by evaporation under high vacuum of high-quality thin films of Fe(phen)2(NCS)2 (phen=1,10-phenanthroline) that maintain the expected electronic structure down to a thickness of 10 nm and that exhibit a temperature-driven spin transition. We have investigated the current-voltage characteristics of a device based on such films. From the space charge-limited current regime, we deduce a mobility of 6.5x10-6 cm2/V?s that is similar to the low-range mobility measured on the widely studied tris(8-hydroxyquinoline)aluminium organic semiconductor. This work paves the way for multifunctional molecular devices based on spin-crossover complexes

    Composition, structure and stability of RuO_2(110) as a function of oxygen pressure

    Full text link
    Using density-functional theory (DFT) we calculate the Gibbs free energy to determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic equilibrium with an oxygen-rich environment. The traditionally assumed stoichiometric termination is only found to be favorable at low oxygen chemical potentials, i.e. low pressures and/or high temperatures. At realistic O pressure, the surface is predicted to contain additional terminal O atoms. Although this O excess defines a so-called polar surface, we show that the prevalent ionic model, that dismisses such terminations on electrostatic grounds, is of little validity for RuO_2(110). Together with analogous results obtained previously at the (0001) surface of corundum-structured oxides, these findings on (110) rutile indicate that the stability of non-stoichiometric terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2

    Get PDF
    The phase diagram of surface structures for the model catalyst RuO2(110) in contact with a gas environment of O2 and CO is calculated by density-functional theory and atomistic thermodynamics. Adsorption of the reactants is found to depend crucially on temperature and partial pressures in the gas phase. Assuming that a catalyst surface under steady-state operation conditions is close to a constrained thermodynamic equilibrium, we are able to rationalize a number of experimental findings on the CO oxidation over RuO2(110). We also calculated reaction pathways and energy barriers. Based on the various results the importance of phase coexistence conditions is emphasized as these will lead to an enhanced dynamics at the catalyst surface. Such conditions may actuate an additional, kinetically controlled reaction mechanism on RuO2(110).Comment: 12 pages including 8 figure files. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Clar Sextet Analysis of Triangular, Rectangular and Honeycomb Graphene Antidot Lattices

    Full text link
    Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer scale periodic array of holes in the graphene sheet a band gap may form; the size of the gap is controllable by adjusting the parameters of the lattice. The hole diameter, hole geometry, lattice geometry and the separation of the holes are parameters that all play an important role in determining the size of the band gap, which, for technological applications, should be at least of the order of tenths of an eV. We investigate four different hole configurations: the rectangular, the triangular, the rotated triangular and the honeycomb lattice. It is found that the lattice geometry plays a crucial role for size of the band gap: the triangular arrangement displays always a sizable gap, while for the other types only particular hole separations lead to a large gap. This observation is explained using Clar sextet theory, and we find that a sufficient condition for a large gap is that the number of sextets exceeds one third of the total number of hexagons in the unit cell. Furthermore, we investigate non-isosceles triangular structures to probe the sensitivity of the gap in triangular lattices to small changes in geometry

    A unique Z_4^R symmetry for the MSSM

    Get PDF
    We consider the possible anomaly free Abelian discrete symmetries of the MSSM that forbid the mu-term at perturbative order. Allowing for anomaly cancellation via the Green-Schwarz mechanism we identify discrete R-symmetries as the only possibility and prove that there is a unique Z_4^R symmetry that commutes with SO(10). We argue that non-perturbative effects will generate a mu-term of electroweak order thus solving the mu-problem. The non-perturbative effects break the Z_4^R symmetry leaving an exact Z_2 matter parity. As a result dimension four baryon- and lepton-number violating operators are absent while, at the non-perturbative level, dimension five baryon- and lepton-number violating operators get induced but are highly suppressed so that the nucleon decay rate is well within present bounds.Comment: 6 page
    • 

    corecore