70 research outputs found

    Fast, predictable and low energy memory references through architecture-aware compilation

    Get PDF
    The design of future high-performance embedded systems is hampered by two problems: First, the required hardware needs more energy than is available from batteries. Second, current cache-based approaches for bridging the increasing speed gap between processors and memories cannot guarantee predictable real-time behavior. A contribution to solving both problems is made in this paper which describes a comprehensive set of algorithms that can be applied at design time in order to maximally exploit scratch pad memories (SPMs). We show that both the energy consumption as well as the computed worst case execution time (WCET) can be reduced by up to to 80% and 48%, respectively, by establishing a strong link between the memory architecture and the compiler

    Flux estimates and oh reaction potential of reactive biogenic volatile organic compounds (BVOCs) from a mixed northern hardwood forest, Atmos

    Get PDF
    Abstract Diurnal branch-level emission rates of biogenic volatile organic compounds (BVOC) including isoprene, monoterpenes (MT), and sesquiterpenes (SQT) were determined at the University of Michigan Biological Station for the tree species red maple (Acer rubrum), red oak (Quercus rubra), paper birch (Betula papyrifera), white pine (Pinus strobus), and big tooth aspen (Populus grandidentata). These emission rates were combined with detailed biomass distribution and meteorological data and incorporated into the canopy model, model of emissions of gasses and aerosols from nature (MEGAN), for estimating whole-canopy fluxes of isoprene. The modeled half-hour fluxes ðmg C m À2 h À1 Þ and cumulative seasonal fluxes ðmg C m À2 Þ compared favorably with results from direct, canopy-level eddy covariance (EC) isoprene measurements; modeled cumulative seasonal flux deviated less than 30% from the EC results. Significant MT emissions were found from four of the five tree species. MT emissions from three of these were both light-and temperature-dependent and were approximately one order of magnitude greater than light-independent MT emissions. SQT emissions were identified from three of the five tree species. The model was modified to incorporate SQT and both light-dependent and light-independent MT emissions for determining fluxes. Isoprene comprised 495% of the total terpenoid flux with MT and SQT comprising 4% and 0.3%, respectively. The average cumulative fluxes (in mg C m À2 ) from June through September were 2490 for isoprene, 105 for MT, and 7 for SQT. A simple box model analysis was used to estimate the contribution of the isoprene, MT, and SQT emissions to the total OH reactivity. These results confirm that isoprene dominates OH reactions especially during daytime hours. Emissions of reactive MT and SQT increase the BVOC+OH reactivity, but are still lower than estimates of BVOC fluxes at this site necessary for affecting OH reactivity to the significant degree suggested by recent reports.

    Reversal of Long-Term Trends in Ethane Identified from the Global Atmosphere Watch Reactive Gases Measurement Network

    Full text link
    Reactive gases play an important role in climate and air pollution issues. They control the self-cleansing capability of the troposphere, contribute to air pollution and acid deposition, regulate the lifetimes and provide tracers for deciphering sources and sinks for greenhouse gases. Within GAW, the focus is placed on long-term, high-quality observations of ozone (O3), carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxides (NOx), and sulfur dioxide (SO2). More than 100 stations worldwide carry out reactive gases measurements with data reported to two World Data Centers. The reactive gases program in GAW cooperates The WMO GAW Reactive Gases Program with regional networks and other global monitoring initiatives in order to attain a complete picture of the tropospheric chemical composition. Observations are being made by in-situ monitoring, measurements from commercial routine air-crafts (e.g. IAGOS), column observations, and from flask sampling networks. Quality control and coordination of measurements between participating stations are a primary emphasis. GAW reactive gases data in rapid delivery mode are used to evaluate operational atmospheric composition forecasts in the EU Copernicus Atmospheric Monitoring Service. Oversight of the program is provided by GAW-WMO coordinated Reactive Gases Scientific Advisory Committee (RG-SAG)

    Impact of instrumentation in lumbar spinal fusion in elderly patients

    Get PDF
    Background and purpose An increasing number of lumbar fusions are performed using allograft to avoid donor-site pain. In elderly patients, fusion potential is reduced and the patient may need supplementary stability to achieve a solid fusion if allograft is used. We investigated the effect of instrumentation in lumbar spinal fusion performed with fresh frozen allograft in elderly patients

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    Overview of the MOSAiC expedition - Atmosphere

    Get PDF
    With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic

    Eumonis : Effizienzsteigerung bei der Erzeugung erneuerbarer Energien

    No full text
    • …
    corecore