100 research outputs found

    The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary metabolism in <it>Serratia </it>sp. ATCC 39006 (<it>Serratia </it>39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in <it>Serratia </it>39006.</p> <p>Results</p> <p>We demonstrate that a mutation in the high affinity phosphate transporter <it>pstSCAB-phoU</it>, believed to mimic low phosphate conditions, causes upregulation of secondary metabolism and QS in <it>Serratia </it>39006, via the PhoBR two-component system. Phosphate limitation also activated secondary metabolism and QS in <it>Serratia </it>39006. In addition, a <it>pstS </it>mutation resulted in upregulation of <it>rap</it>. Rap, a putative SlyA/MarR-family transcriptional regulator, shares similarity with the global regulator RovA (regulator of virulence) from <it>Yersina </it>spp. and is an activator of secondary metabolism in <it>Serratia </it>39006. We demonstrate that expression of <it>rap</it>, <it>pigA-O </it>(encoding the prodigiosin biosynthetic operon) and <it>smaI </it>are controlled via PhoBR in <it>Serratia </it>39006.</p> <p>Conclusion</p> <p>Phosphate limitation regulates secondary metabolism in <it>Serratia </it>39006 via multiple inter-linked pathways, incorporating transcriptional control mediated by three important global regulators, PhoB, SmaR and Rap.</p

    The College News, 1945-02-14, Vol. 31, No. 15

    Get PDF
    Bryn Mawr College student newspaper. Merged with The Haverford News in 1968 to form the Bi-college News (with various titles from 1968 on). Published weekly (except holidays) during the academic year

    Genome, proteome and structure of a T7-like bacteriophage of the kiwifruit canker phytopathogen pseudomonas syringae pv. actinidiae

    Get PDF
    La pseudomonas syringae pv. actinidiae es un patógeno responsable significativo de la afta bacteriana severa del kiwi (Actinidia sp.). Los bacteriófagos infectados de este fitopatógeno tienen potencial como agentes de control biológico como parte de un enfoque integrado de la gestión del cancro bacteriano, y para su uso como herramientas molecular para el estudio de esta bacteria. Una variedad de bacteriófagos fueron previamente aislados, antes de ser infectados con P. syringae pv. Actinidiae; y sus propiedades básicas fueron caracterizadas para proporcionar un marco para la formulación de estos fagos, como agentes de biocontrol. Aquí, hemos examinado con más detalle el φPsa17, un fago con la capacidad de infectar a una amplia gama de cepas P. syringae pv. Actinidiae, único miembro de la Podoviridae en esta colección. La morfología de partículas fue visualizada mediante criomicroscopía electrónica, el genoma fue secuenciado, y sus proteínas estructurales fueron analizados usando shotgun proteomics. Estos estudios demostraron que 40,525 φPsa17 tiene un genoma de BP, es un miembro de género T7likevirus y está estrechamente relacionada con la pseudomonada llamada fágicas φPSA2 y GH-1. Once proteínas estructurales (andamios) fueron detectados por la proteómica y φPsa17 tiene una cápside de aproximadamente 60 nm de diámetro. No fueron identificados genes indicativos de un ciclo de vida lisogénica, sugiriendo que el fago es necesariamente lítico. Estas características indican que φPsa17 pueden ser adecuadas para la formulación como un agente de biocontrol de P. syringae pv. actinidiaePseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiaeTrabajo patrocinado por. Royal Society. Fellowship Rutherford, para Peter C. Fineran Otago School of Medical Sciences Summer Research Scholarship, para Danni ChenpeerReviewe

    Type I-F CRISPR-Cas resistance against virulent phages results in abortive infection and provides population-level immunity

    Get PDF
    Funder: Veni grant, Netherlands Organization for Scientific Research (NWO) [016.Veni.171.047 to RHJS] Health Sciences Career Development Award from the University of Otago, NZAbstract: Type I CRISPR-Cas systems are abundant and widespread adaptive immune systems in bacteria and can greatly enhance bacterial survival in the face of phage infection. Upon phage infection, some CRISPR-Cas immune responses result in bacterial dormancy or slowed growth, which suggests the outcomes for infected cells may vary between systems. Here we demonstrate that type I CRISPR immunity of Pectobacterium atrosepticum leads to suppression of two unrelated virulent phages, ɸTE and ɸM1. Immunity results in an abortive infection response, where infected cells do not survive, but viral propagation is severely decreased, resulting in population protection due to the reduced phage epidemic. Our findings challenge the view of CRISPR-Cas as a system that protects the individual cell and supports growing evidence of abortive infection by some types of CRISPR-Cas systems

    Global phylogeography and ancient evolution of the widespread human gut virus crAssphage

    Full text link
    Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome

    Global phylogeography and ancient evolution of the widespread human gut virus crAssphage

    Get PDF
    Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world’s countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome
    • …
    corecore