116 research outputs found

    Genetic structuring and migration patterns of Atlantic bigeye tuna, Thunnus obesus (Lowe, 1839)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large pelagic fishes are generally thought to have little population genetic structuring based on their cosmopolitan distribution, large population sizes and high dispersal capacities. However, gene flow can be influenced by ecological (e.g. homing behaviour) and physical (e.g. present-day ocean currents, past changes in sea temperature and levels) factors. In this regard, Atlantic bigeye tuna shows an interesting genetic structuring pattern with two highly divergent mitochondrial clades (Clades I and II), which are assumed to have been originated during the last Pleistocene glacial maxima. We assess genetic structure patterns of Atlantic bigeye tuna at the nuclear level, and compare them with mitochondrial evidence.</p> <p>Results</p> <p>We examined allele size variation of nine microsatellite loci in 380 individuals from the Gulf of Guinea, Canary, Azores, Canada, Indian Ocean, and Pacific Ocean. To investigate temporal stability of genetic structure, three Atlantic Ocean sites were re-sampled a second year. Hierarchical AMOVA tests, <it>R</it><sub><it>ST </it></sub>pairwise comparisons, isolation by distance (Mantel) tests, Bayesian clustering analyses, and coalescence-based migration rate inferences supported unrestricted gene flow within the Atlantic Ocean at the nuclear level, and therefore interbreeding between individuals belonging to both mitochondrial clades. Moreover, departures from HWE in several loci were inferred for the samples of Guinea, and attributed to a Wahlund effect supporting the role of this region as a spawning and nursery area. Our microsatellite data supported a single worldwide panmictic unit for bigeye tunas. Despite the strong Agulhas Current, immigration rates seem to be higher from the Atlantic Ocean into the Indo-Pacific Ocean, but the actual number of individuals moving per generation is relatively low compared to the large population sizes inhabiting each ocean basin.</p> <p>Conclusion</p> <p>Lack of congruence between mt and nuclear evidences, which is also found in other species, most likely reflects past events of isolation and secondary contact. Given the inferred relatively low number of immigrants per generation around the Cape of Good Hope, the proportions of the mitochondrial clades in the different oceans may keep stable, and it seems plausible that the presence of individuals belonging to the mt Clade I in the Atlantic Ocean may be due to extensive migrations that predated the last glaciation.</p

    The utility of single nucleotide polymorphisms in inferences of population history

    Get PDF
    Single nucleotide polymorphisms (SNPs) represent the most widespread type of sequence variation in genomes, yet they have only emerged recently as valuable genetic markers for revealing the evolutionary history of populations. Their occurrence throughout the genome also makes them ideal for analyses of speciation and historical demography, especially in light of recent theory suggesting that many unlinked nuclear loci are needed to estimate population genetic parameters with statistical confidence. In spite of having lower variation compared with microsatellites, SNPs should make the comparison of genomic diversities and histories of different species (the core goal of comparative biogeography) more straightforward than has been possible with microsatellites. The most pervasive, but correctable, complication to SNP analysis is a bias towards analyzing only the most variable loci, an artifact that is usually introduced by the limited number of individuals used to screen initially for polymorphisms. Although the use of SNPs as markers in population studies is still new, innovative methods for SNP identification, automated screening, haplotype inference and statistical analysis might quickly make SNPs the marker of choice

    Balancing a Cline by Influx of Migrants: A Genetic Transition in Water Frogs of Eastern Greece

    Get PDF
    Variation patterns of allozymes and of ND3 haplotypes of mitochondrial DNA reveal a zone of genetic transition among western Palearctic water frogs extending across northeastern Greece and European Turkey. At the western end of the zone, allozymes characteristic of Central European frogs known as Pelophylax ridibundus predominate, whereas at the eastern end, alleles characteristic of western Anatolian water frogs (P. cf. bedriagae) prevail. The ND3 haplotypes reveal 2 major clades, 1 characteristic of Anatolian frogs, the other of European; the European clade itself has distinct eastern and western subclades. Both the 2 major clades and the 2 subclades overlap within the transition zone. Using Bayesian model selection methods, allozyme data suggest considerable immigration into the Nestos River area from eastern and western populations. In contrast, the ND3 data suggest that migration rates are so high among all locations that they form a single panmictic unit; the best model for allozymes is second best for mitochondrial DNA (mtDNA). Nuclear markers (allozymes), which have roughly 4 times as deep a coalescent history as mtDNA data and thus may reflect patterns over a longer time, indicate that eastern and western refugial populations have expanded since deglaciation (in the last 10 000 years) and have met near the Nestos River, whereas the mtDNA with its smaller effective population size has already lost the signal of partitioning into refugi

    BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics

    Get PDF
    Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.This work was supported by the National Science Foundation [grant numbers DBI-0755048, DEB-0732920, DEB-1036448, DMS-0931642, EF-0331495, EF-0905606, EF-0949453]; the National Institutes of Health [grant numbers R01-HG006139, R01-GM037841, R01-GM078985, R01-GM086887, R01-NS063897]; the Biotechnology and Biological Sciences Research Council [grant number BB/H011285/1]; the Wellcome Trust [grant number WT092807MA]; and Google Summer of Code

    An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins

    Get PDF
    Zinc-finger proteins (ZFPs) have long been recognized for their potential to manipulate genetic information because they can be engineered to bind novel DNA targets. Individual zinc-finger domains (ZFDs) bind specific DNA triplet sequences; their apparent modularity has led some groups to propose methods that allow virtually any desired DNA motif to be targeted in vitro. In practice, however, ZFPs engineered using this ‘modular assembly’ approach do not always function well in vivo. Here we report a modular assembly scoring strategy that both identifies combinations of modules least likely to function efficiently in vivo and provides accurate estimates of their relative binding affinities in vitro. Predicted binding affinities for 53 ‘three-finger’ ZFPs, computed based on energy contributions of the constituent modules, were highly correlated (r = 0.80) with activity levels measured in bacterial two-hybrid assays. Moreover, Kd values for seven modularly assembled ZFPs and their intended targets, measured using fluorescence anisotropy, were also highly correlated with predictions (r = 0.91). We propose that success rates for ZFP modular assembly can be significantly improved by exploiting the score-based strategy described here

    BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics

    Get PDF
    Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software

    A Potent and Selective S1P1 Antagonist with Efficacy in Experimental Autoimmune Encephalomyelitis

    Get PDF
    SummaryLymphocyte trafficking is critically regulated by the Sphingosine 1-phosphate receptor-1 (S1P1), a G protein-coupled receptor that has been highlighted as a promising therapeutic target in autoimmunity. Fingolimod (FTY720, Gilenya) is a S1P1 receptor agonist that has recently been approved for the treatment of multiple sclerosis (MS). Here, we report the discovery of NIBR-0213, a potent and selective S1P1 antagonist that induces long-lasting reduction of peripheral blood lymphocyte counts after oral dosing. NIBR-0213 showed comparable therapeutic efficacy to fingolimod in experimental autoimmune encephalomyelitis (EAE), a model of human MS. These data provide convincing evidence that S1P1 antagonists are effective in EAE. In addition, the profile of NIBR-0213 makes it an attractive candidate to further study the consequences of S1P1 receptor antagonism and to differentiate the effects from those of S1P1 agonists

    Species Differentiation on a Dynamic Landscape: Shifts in Metapopulation Genetic Structure Using the Chronology of the Hawaiian Archipelago

    Get PDF
    Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation

    Species History Masks the Effects of Human-Induced Range Loss – Unexpected Genetic Diversity in the Endangered Giant Mayfly Palingenia longicauda

    Get PDF
    Freshwater biodiversity has declined dramatically in Europe in recent decades. Because of massive habitat pollution and morphological degradation of water bodies, many once widespread species persist in small fractions of their original range. These range contractions are generally believed to be accompanied by loss of intraspecific genetic diversity, due to the reduction of effective population sizes and the extinction of regional genetic lineages. We aimed to assess the loss of genetic diversity and its significance for future potential reintroduction of the long-tailed mayfly Palingenia longicauda (Olivier), which experienced approximately 98% range loss during the past century. Analysis of 936 bp of mitochondrial DNA of 245 extant specimens across the current range revealed a surprisingly large number of haplotypes (87), and a high level of haplotype diversity (). In contrast, historic specimens (6) from the lost range (Rhine catchment) were not differentiated from the extant Rába population (, ), despite considerable geographic distance separating the two rivers. These observations can be explained by an overlap of the current with the historic (Pleistocene) refugia of the species. Most likely, the massive recent range loss mainly affected the range which was occupied by rapid post-glacial dispersal. We conclude that massive range losses do not necessarily coincide with genetic impoverishment and that a species' history must be considered when estimating loss of genetic diversity. The assessment of spatial genetic structures and prior phylogeographic information seems essential to conserve once widespread species
    corecore