1,508 research outputs found

    Not by transmission alone: the role of invention in cultural evolution

    Get PDF
    Innovation—the combination of invention and social learning—can empower species to invade new niches via cultural adaptation. Social learning has typically been regarded as the fundamental driver for the emergence of traditions and thus culture. Consequently, invention has been relatively understudied outside the human lineage—despite being the source of new traditions. This neglect leaves basic questions unanswered: what factors promote the creation of new ideas and practices? What affects their spread or loss? We critically review the existing literature, focusing on four levels of investigation: traits (what sorts of behaviours are easiest to invent?), individuals (what factors make some individuals more likely to be inventors?), ecological contexts (what aspects of the environment make invention or transmission more likely?), and populations (what features of relationships and societies promote the rise and spread of new inventions?). We aim to inspire new research by highlighting theoretical and empirical gaps in the study of innovation, focusing primarily on inventions in non-humans. Understanding the role of invention and innovation in the history of life requires a well-developed theoretical framework (which embraces cognitive processes) and a taxonomically broad, cross-species dataset that explicitly investigates inventions and their transmission. We outline such an agenda here. This article is part of the theme issue ‘Foundations of cultural evolution’

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    Coral adaptive capacity insufficient to halt global transition of coral reefs into net erosion under climate change

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. DATA AVAILABILITY STATEMENT: All data submitted to dryad https://doi.org/10.5061/dryad.5hqbz kh9vProjecting the effects of climate change on net reef calcium carbonate production is critical to understanding the future impacts on ecosystem function, but prior estimates have not included corals' natural adaptive capacity to such change. Here we estimate how the ability of symbionts to evolve tolerance to heat stress, or for coral hosts to shuffle to favourable symbionts, and their combination, may influence responses to the combined impacts of ocean warming and acidification under three representative concentration pathway (RCP) emissions scenarios (RCP2.6, RCP4.5 and RCP8.5). We show that symbiont evolution and shuffling, both individually and when combined, favours persistent positive net reef calcium carbonate production. However, our projections of future net calcium carbonate production (NCCP) under climate change vary both spatially and by RCP. For example, 19%–35% of modelled coral reefs are still projected to have net positive NCCP by 2050 if symbionts can evolve increased thermal tolerance, depending on the RCP. Without symbiont adaptive capacity, the number of coral reefs with positive NCCP drops to 9%–13% by 2050. Accounting for both symbiont evolution and shuffling, we project median positive NCPP of coral reefs will still occur under low greenhouse emissions (RCP2.6) in the Indian Ocean, and even under moderate emissions (RCP4.5) in the Pacific Ocean. However, adaptive capacity will be insufficient to halt the transition of coral reefs globally into erosion by 2050 under severe emissions scenarios (RCP8.5).Royal Society Te ApārangiVictoria University of Wellingto

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    The outcomes of Perthes' disease of the hip: a study protocol for the development of a core outcome set.

    Get PDF
    BACKGROUND: Perthes' disease is an idiopathic osteonecrosis of a developmental hip that is most frequent in Northern Europe. Currently, the absence of a common set of standardised outcomes makes comparisons between studies of different interventions challenging. This study aims to summarise the outcomes used in clinical research of interventions for Perthes' disease and define a set of core outcomes (COS) to ensure that the variables of primary importance are measured and reported in future research studies investigating Perthes' disease. METHODS: A systematic review of the current literature will be used to identify a list of outcomes reported in previous studies. Additional important outcomes will be sought by interviewing a group of children with Perthes' disease, adults who were treated with the disease in infancy and parents of children with the disease. This list will then be evaluated by experts in Perthes' disease using a Delphi survey divided into two rounds to ascertain the importance of each outcome. The final outcomes list obtained from the Delphi survey will be then discussed during a consensus meeting of representative key stakeholders in order to define the COS to be reported in future clinical trials related to Perthes' disease. DISCUSSION: The absence of high-quality research and clear guidelines concerning the management of Perthes' disease is, at least in part, due to the difficulties in the comparing the results from previous studies. The development of a COS seeks to standardise outcomes collected in future research studies to enable comparisons between studies to be made and to facilitate meta-analyses of results. TRIAL REGISTRATION: Core Outcome Measures in Effectiveness Trials Initiative (COMET), 1003 . Registered on 20 July 2017. Prospero International Prospective Register of Systematic Reviews, CRD 42017069742 . Registered on 10 July 2017

    A case review to describe variation in care following diagnosis of Perthes' disease

    Get PDF
    Aims Perthes’ disease is a condition which leads to necrosis of the femoral head. It is most commonly reported in children aged four to nine years, with recent statistics suggesting it affects around five per 100,000 children in the UK. Current treatment for the condition aims to maintain the best possible environment for the disease process to run its natural course. Management typically includes physiotherapy with or without surgical intervention. Physiotherapy intervention often will include strengthening/stretching programmes, exercise/activity advice, and, in some centres, will include intervention, such as hydrotherapy. There is significant variation in care with no consensus on which treatment option is best. The importance of work in this area has been demonstrated by the British Society for Children’s Orthopaedic Surgery through the James Lind Alliance’s prioritization of work to determine/identify surgical versus non-surgical management of Perthes’ disease. It was identified as the fourth-highest priority for paediatric lower limb surgery research in 2018. Methods Five UK NHS centres, including those from the NEWS (North, East, West and South Yorkshire) orthopaedic group, contributed to this case review, with each entre providing clinical data from a minimum of five children. Information regarding both orthopaedic and physiotherapeutic management over a two-year post-diagnosis period was reviewed. Results Data were extracted from the clinical records of 32 children diagnosed with Perthes’ disease; seven boys and 25 girls. The mean age of the children at diagnosis was 6.16 years (standard deviation (SD) 3.001). In all, 26 children were referred for physiotherapy. In the two-year period following diagnosis, children were seen a median of 7.5 times (interquartile range (IQR) 4.25 to 11) by an orthopaedic surgeon, and a median of 9.5 times (IQR 8 to 18.25) by a physiotherapist. One centre had operated on all of their children, while another had operated on none. Overall, 17 (53%) of the children were managed conservatively in the two-year follow-up period, and 15 (47%) of the children underwent surgery in the two-year follow-up period. Conclusion The results of this case review demonstrate a variation of care provided to children in the UK with Perthes’ disease. Further national and international understanding of current care is required to underpin the rationale for different treatment options in children with Perthes’ disease

    Generalized Geometry and M theory

    Full text link
    We reformulate the Hamiltonian form of bosonic eleven dimensional supergravity in terms of an object that unifies the three-form and the metric. For the case of four spatial dimensions, the duality group is manifest and the metric and C-field are on an equal footing even though no dimensional reduction is required for our results to hold. One may also describe our results using the generalized geometry that emerges from membrane duality. The relationship between the twisted Courant algebra and the gauge symmetries of eleven dimensional supergravity are described in detail.Comment: 29 pages of Latex, v2 References added, typos fixed, v3 corrected kinetic term and references adde

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)
    corecore