233 research outputs found

    Implementing adaptive management into a climate change adaptation strategy for a drowning New England salt marsh

    Get PDF
    Due to climate change and other anthropogenic stressors, future conditions and impacts facing coastal habitats are unclear to coastal resource managers. Adaptive management strategies have become an important tactic to compensate for the unknown environmental conditions that coastal managers and restoration ecologists face. Adaptive management requires extensive planning and resources, which can act as barriers to achieve a successful project. These barriers also create challenges in incorporating adaptive management into climate change adaptation strategies. This case study describes and analyzes the Rhode Island Coastal Resources Management Council\u27s approach to overcome these challenges to implement a successful adaptive management project to restore a drowning salt marsh using the climate change adaptation strategy, sediment enhancement, at Quonochontaug Pond in Charlestown, RI. Through effective communication and active stakeholder involvement, this project successfully incorporated interdisciplinary partner and stakeholder collaborations and developed an iterative learning strategy that highlights the adaptive management method

    Enhanced carbon uptake and reduced methane emissions in a newly restored wetland

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 125(1), (2020): e2019JG005222, doi:10.1029/2019JG005222.Wetlands play an important role in reducing global warming potential in response to global climate change. Unfortunately, due to the effects of human disturbance and natural erosion, wetlands are facing global extinction. It is essential to implement engineering measures to restore damaged wetlands. However, the carbon sink capacity of restored wetlands is unclear. We examined the seasonal change of greenhouse gas emissions in both restored wetland and natural wetland and then evaluated the carbon sequestration capacity of the restored wetland. We found that (1) the carbon sink capacity of the restored wetland showed clear daily and seasonal change, which was affected by light intensity, air temperature, and vegetation growth, and (2) the annual daytime (8–18 hr) sustained‐flux global warming potential was −11.23 ± 4.34 kg CO2 m−2 y−1, representing a much larger carbon sink than natural wetland (−5.04 ± 3.73 kg CO2 m−2 y−1) from April to December. In addition, the results showed that appropriate tidal flow management may help to reduce CH4 emission in wetland restoration. Thus, we proposed that the restored coastal wetland, via effective engineering measures, reliably acted as a large net carbon sink and has the potential to help mitigate climate change.We would like to thank Yangtze Delta Estuarine Wetland Ecosystem Ministry of Education & Shanghai Observation and Research Station for providing sites during our research. This research was supported by the National Key Research and Development Program of China (Grant 2017YFC0506002), the National Natural Science Foundation of China Overseas and Hong Kong‐Macao Scholars Collaborative Research Fund (Grant 31728003), the China Postdoctoral Science Foundation (Grant 2018M640362), the Shanghai University Distinguished Professor (Oriental Scholars) Program (Grant JZ2016006), the Open Fund of Shanghai Key Lab for Urban Ecological Processes and Eco‐Restoration (Grant SHUES2018B06), and the Scientific Projects of Shanghai Municipal Oceanic Bureau (Grant 2018‐03). The complete data set is available at https://data.4tu.nl/repository/uuid:536b2614‐c4ca‐43d2‐84dd‐6180fd859544

    Fulleretic well-defined scaffolds: Donor–fullerene alignment through metal coordination and its effect on photophysics

    Get PDF
    Herein, we report the first example of a crystalline metal–donor–fullerene framework, in which control of the donor–fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross‐polarization magic‐angle spinning NMR spectroscopy, X‐ray diffraction, and time‐resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy‐transfer (ET) studies of the fulleretic donor–acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well‐defined fulleretic donor–acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics

    Sex ratio and the evolution of aggression in fruit flies

    Get PDF
    Aggressive behaviours are among the most striking displayed by animals, and aggression strongly impacts fitness in many species. Aggression varies plastically in response to the social environment, but we lack direct tests of how aggression evolves in response to intra-sexual competition. We investigated how aggression in both sexes evolves in response to the competitive environment, using populations of Drosophila melanogaster that we experimentally evolved under female-biased, equal, and male-biased sex ratios. We found that after evolution in a female-biased environment—with less male competition for mates—males fought less often on food patches, although the total frequency and duration of aggressive behaviour did not change. In females, evolution in a female-biased environment—where female competition for resources is higher—resulted in more frequent aggressive interactions among mated females, along with a greater increase in post-mating aggression. These changes in female aggression could not be attributed solely to evolution either in females or in male stimulation of female aggression, suggesting that coevolved interactions between the sexes determine female post-mating aggression. We found evidence consistent with a positive genetic correlation for aggression between males and females, suggesting a shared genetic basis. This study demonstrates the experimental evolution of a behaviour strongly linked to fitness, and the potential for the social environment to shape the evolution of contest behaviours

    No Remdesivir Resistance Observed in the Phase 3 Severe and Moderate COVID-19 SIMPLE Trials

    Get PDF
    Remdesivir (RDV) is a broad-spectrum nucleotide analog prodrug approved for the treatment of COVID-19 in hospitalized and non-hospitalized patients with clinical benefit demonstrated in multiple Phase 3 trials. Here we present SARS-CoV-2 resistance analyses from the Phase 3 SIMPLE clinical studies evaluating RDV in hospitalized participants with severe or moderate COVID-19 disease. The severe and moderate studies enrolled participants with radiologic evidence of pneumonia and a room-air oxygen saturation of ≀94% or >94%, respectively. Virology sample collection was optional in the study protocols. Sequencing and related viral load data were obtained retrospectively from participants at a subset of study sites with local sequencing capabilities (10 of 183 sites) at timepoints with detectable viral load. Among participants with both baseline and post-baseline sequencing data treated with RDV, emergent Nsp12 substitutions were observed in 4 of 19 (21%) participants in the severe study and none of the 2 participants in the moderate study. The following 5 substitutions emerged: T76I, A526V, A554V, E665K, and C697F. The substitutions T76I, A526V, A554V, and C697F had an EC50 fold change of ≀1.5 relative to the wildtype reference using a SARS-CoV-2 subgenomic replicon system, indicating no significant change in the susceptibility to RDV. The phenotyping of E665K could not be determined due to a lack of replication. These data reveal no evidence of relevant resistance emergence and further confirm the established efficacy profile of RDV with a high resistance barrier in COVID-19 patients

    Understanding the Use of Crisis Informatics Technology among Older Adults

    Full text link
    Mass emergencies increasingly pose significant threats to human life, with a disproportionate burden being incurred by older adults. Research has explored how mobile technology can mitigate the effects of mass emergencies. However, less work has examined how mobile technologies support older adults during emergencies, considering their unique needs. To address this research gap, we interviewed 16 older adults who had recent experience with an emergency evacuation to understand the perceived value of using mobile technology during emergencies. We found that there was a lack of awareness and engagement with existing crisis apps. Our findings characterize the ways in which our participants did and did not feel crisis informatics tools address human values, including basic needs and esteem needs. We contribute an understanding of how older adults used mobile technology during emergencies and their perspectives on how well such tools address human values.Comment: 10 page

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Fulleretic Well-Defined Scaffolds: Donor–Fullerene Alignment Through Metal Coordination and Its Effect on Photophysics

    Get PDF
    Herein, we report the first example of a crystalline metal–donor–fullerene framework, in which control of the donor–fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross-polarization magic-angle spinning NMR spectroscopy, X-ray diffraction, and time-resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy-transfer (ET) studies of the fulleretic donor–acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well-defined fulleretic donor–acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • 

    corecore