52 research outputs found

    Statistical investigation of the full concentration range of fasted and fed simulated intestinal fluid on the equilibrium solubility of oral drugs

    Get PDF
    Upon oral administration the solubility of a drug in intestinal fluid is a key property influencing bioavailability. It is also recognised that simple aqueous solubility does not reflect intestinal solubility and to optimise in vitro investigations simulated intestinal media systems have been developed. Simulated intestinal media which can mimic either the fasted or fed state consists of multiple components each of which either singly or in combination may influence drug solubility, a property that can be investigated by a statistical design of experiment technique. In this study a design of experiment covering the full range from the lower limit of fasted to the upper limit of fed parameters and using a small number of experiments has been performed. The measured equilibrium solubility values are comparable with literature values for simulated fasted and fed intestinal fluids as well as human fasted and fed intestinal fluids. The equilibrium solubility data range is statistically equivalent to a combination of published fasted and fed design of experiment data in six (indomethacin, phenytoin, zafirlukast, carvedilol, fenofibrate and probucol) drugs with three (aprepitant, tadalafil and felodipine) drugs not equivalent. In addition the measured equilibrium solubility data sets were not normally distributed. Further studies will be required to determine the reasons for these results however it implies that a single solubility measurement without knowledge of the solubility distribution will be of limited value. The statistically significant media factors which promote equilibrium solubility (pH, sodium oleate and bile salt) were in agreement with published results but the number of determined significant factors and factor interactions was fewer in this study, lecithin for example did not influence solubility. This may be due to the reduction in statistical sensitivity from the lower number of experimental data points or the fact that using the full range will examine media parameters ratios that are not biorelevant. Overall the approach will provide an estimate of the solubility range and the most important media factors but will not be equivalent to larger scale focussed studies. Further investigations will be required to determine why some drugs do not produce equivalent DoE solubility distributions, for example combined fasted and fed DoE, but this simply may be due to the complexity and individuality of the interactions between a drug and the media components

    Small scale design of experiment investigation of equilibrium solubility in simulated fasted and fed intestinal fluid

    Get PDF
    It is widely recognised that drug solubility within the gastrointestinal tract (GIT) differs from values determined in a simple aqueous buffer and to circumvent this problem measurement in biorelevant fluids is determined. Biorelevant fluids are complex mixtures of components (sodium taurocholate, lecithin, sodium phosphate, sodium chloride, pancreatin and sodium oleate) at various concentrations and pH levels to provide systems simulating fasted (FaSSIF) or fed (FeSSIF) intestinal media. Design of Experiment (DoE) studies have been applied to investigate FaSSIF and FeSSIF and indicate that a drug's equilibrium solubility varies over orders of magnitude, is influenced by the drug type and individual or combinations of media components, with some of these interactions being drug specific. Although providing great detail on the drug media interactions these studies are resource intensive requiring up to ninety individual experiments for FeSSIF. In this paper a low sample number or reduced DoE system has been investigated by restricting components with minimal solubility impact to a single value and only investigating variations in the concentrations of sodium taurocholate, lecithin, sodium oleate, pH and additionally in the case of fed media, monoglyceride. This reduces the experiments required to ten (FaSSIF) and nine (FeSSIF). Twelve poorly soluble drugs (Ibuprofen, Valsartan, Zafirlukast, Indomethacin, Fenofibrate, Felodipine, Probucol, Tadalafil, Carvedilol, Aprepitant, Bromocriptine and Itraconazole) were investigated and the results compared to published DoE studies and literature solubility values in human intestinal fluid (HIF), FaSSIF or FeSSIF. The solubility range determined by the reduced DoE is statistically equivalent to the larger scale published DoE results in over eighty five percent of the cases. The reduced DoE range also covers HIF, FaSSIF or FeSSIF literature solubility values. In addition the reduced DoE provides lowest measured solubility values that agree with the published DoE values in ninety percent of the cases. However, the reduced DoE only identified single and in some cases none of the major components influencing solubility in contrast to the larger published DoE studies which identified multiple individual components and component interactions. The identification of significant components within the reduced DoE was also dependent upon the drug and system under investigation. The study demonstrates that the lower experimental number reduces statistical power of the DoE to resolve the impact of media components on solubility. However, in a situation where only the solubility range is required the reduced DoE can provide the desired information, which will be of benefit during in vitro development studies. Further refinements are possible to extend the reduced DoE protocol to improve biorelevance and application into areas such as PBPK modelling

    Understanding the relationship between the perceived characteristics of clinical practice guidelines and their uptake: protocol for a realist review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical practice guidelines have the potential to facilitate the implementation of evidence into practice, support clinical decision making, specify beneficial therapeutic approaches, and influence public policy. However, these potential benefits have not been consistently achieved. The limited impact of guidelines can be attributed to organisational constraints, the complexity of the guidelines, and the lack of usability testing or end-user involvement in their development. Implementability has been referred to as the perceived characteristics of guidelines that predict the relative ease of their implementation at the clinical level, but this concept is as yet poorly defined. The objective of our study is to identify guideline attributes that affect uptake in practice by considering evidence from four disciplines (medicine, psychology, management, human factors engineering) to determine the relationship between the perceived characteristics of recommendations and their uptake and to develop a framework of implementability.</p> <p>Methods</p> <p>A realist-review approach to knowledge synthesis will be used to understand attributes of guidelines (<it>e.g</it>., its text and content) and how changing these elements might impact clinical practice and clinical decision making. It also allows for the exploration of 'what works for whom, in what circumstances, and in what respects'. The realist review will be structured according to Pawson's five practical steps in realist reviews: (1) clarifying the scope of the review, (2) determining the search strategy, (3) ensuring proper article selection and study quality assessment, (4) extracting and organising data, and (5) synthesising the evidence and drawing conclusions. Data will be synthesised according to a two-stage analysis: (1) we will extract and define all relevant guideline attributes from the different disciplines, then create a shortlist of unique attributes and investigate their relationships with uptake, and (2) we will compare and contrast the attributes and guideline uptake within each and between the four disciplines to create a robust framework of implementability.</p> <p>Discussion</p> <p>Creating guidelines that are designed to maximise uptake may be a potentially effective and inexpensive way of increasing their impact. However, this is best achieved by a comprehensive framework to inform the design of guidelines drawing on a range of disciplines that study behaviour change. This study will use a customised realist-review approach to synthesising the literature to better understand and operationalise a complex and under-theorised concept.</p

    The topography of simulated intestinal equilibrium solubility

    Get PDF
    Oral administration of a solid dosage form requires drug dissolution in the gastrointestinal tract before absorption. Solubility is a key factor controlling dissolution, and it is recognized that, within the intestinal tract, this is influenced by the luminal fluid pH, amphiphile content, and composition. Various simulated intestinal fluid recipes have been introduced to mimic this behavior and studied using a range of different experimental techniques. In this article, we have measured equilibrium solubility utilizing a novel four component mixture design (4CMD) with biorelevant amphiphiles (bile salt, phospholipid, oleate, and monoglyceride) within a matrix of three pH values (5, 6, and 7) and total amphiphile concentrations (11.7, 30.6, and 77.5 mM) to provide a topographical and statistical overview. Three poorly soluble drugs representing acidic (indomethacin), basic (carvedilol), and neutral (fenofibrate) categories have been studied. The macroscopic solubility behavior agrees with literature and exhibits an overall increasing solubility from low pH and total amphiphile concentration to high pH and total amphiphile concentration. Within the matrix, all three drugs display different topographies, which can be related to the statistical effect levels of the individual amphiphiles or amphiphile interactions on solubility. The study also identifies previously unreported three and four way factor interactions notably between bile salt, phospholipid, pH, and total amphiphile concentration. In addition, the results also reveal that solubility variability is linked to the number of amphiphiles and the respective ratios in the measurement fluid, with the minimum variation present in systems containing all four amphiphiles. The individual 4CMD experiments within the matrix can be linked to provide a possible intestinal solubility window for each drug that could be applied in PBPK modeling systems. Overall the approach provides a novel overview of intestinal solubility topography along with greater detail on the impact of the various factors studied; however, each matrix requires 351 individual solubility measurements. Further studies will be required to refine the experimental protocol in order the maximize information garnered while minimizing the number of measurements required

    Living with Uncertainty

    Get PDF
    The last few years have seen a major rethinking of some of the hallowed assumptions of range ecology and range management practice. This book examines the management of policy implications of this new ecological thinking for pastoral development in dryland areas. With examples drawn from all over Africa, the contributors examine the consequences of living with uncertainty for pastoral development planning, range and fodder management, drought responses, livestock marketing, resource tenure, institutional development and pastoral administration

    Dual level statistical investigation of equilibrium solubility in simulated fasted and fed intestinal fluid

    Get PDF
    The oral route is the preferred option for drug administration but contains the inherent issue of drug absorption from the gastro-intestinal tract (GIT) in order to elicit systemic activity. A pre-requisite for absorption is drug dissolution, which is dependent upon drug solubility in the variable milieu of GIT fluid, with poorly soluble drugs presenting a formulation and biopharmaceutical challenge. Multiple factors within GIT fluid influence solubility ranging from pH to the concentration and ratio of amphiphilic substances such as phospholipid, bile salt, monoglyceride and cholesterol and to aid in vitro investigation simulated intestinal fluids (SIF) covering the fasted and fed state have been developed. SIF media is complex and statistical design of experiment (DoE) investigations have revealed the range of solubility values possible within each state due to physiological variability along with the media factors and factor interactions which influence solubility. However, these studies require large numbers of experiments (>60) and are not feasible or sensible within a drug development setting. In the current study a smaller dual level, reduced experimental number (20) DoE providing three arms covering the fasted and fed states along with a combined analysis has been investigated. The results indicate that this small scale investigation is feasible and provides solubility ranges that encompass published data in human and simulated fasted and fed fluids. The measured fasted and fed solubility ranges are in agreement with published large scale DoE results in around half of the cases, with the differences due to changes in media composition between studies. Indicating that drug specific behaviours are being determined and that careful media factor and concentration level selection is required in order to determine a physiologically relevant solubility range. The study also correctly identifies the major single factor or factors which influence solubility but it is evident that lower significance factors (for example bile salt) are not picked up due to the lower sample number employed. A similar issue is present with factor interactions with only a limited number available for study and generally not determined to have a significant solubility impact due to the lower statistical power of the study. The study indicates that a reduced experimental number DoE is feasible, will provide solubility range results with identification of major solubility factors however statistical limitations restrict the analysis. The approach therefore represents a useful initial screening tool that can guide further in depth analysis of a drug’s behavior in gastrointestinal fluids

    Living with Uncertainty

    Get PDF
    The last few years have seen a major rethinking of some of the hallowed assumptions of range ecology and range management practice. This book examines the management of policy implications of this new ecological thinking for pastoral development in dryland areas. With examples drawn from all over Africa, the contributors examine the consequences of living with uncertainty for pastoral development planning, range and fodder management, drought responses, livestock marketing, resource tenure, institutional development and pastoral administration

    Investigating Host Microbiota Relationships Through Functional Metagenomics

    Get PDF
    The human Intestinal mucus is formed by glycoproteins, the O- and N-linked glycans which constitute a crucial source of carbon for commensal gut bacteria, especially when deprived of dietary glycans of plant origin. In recent years, a dozen carbohydrate-active enzymes from cultivated mucin degraders have been characterized. But yet, considering the fact that uncultured species predominate in the human gut microbiota, these biochemical data are far from exhaustive. In this study, we used functional metagenomics to identify new metabolic pathways in uncultured bacteria involved in harvesting mucin glycans. First, we performed a high-throughput screening of a fosmid metagenomic library constructed from the ileum mucosa microbiota using chromogenic substrates. The screening resulted in the isolation of 124 clones producing activities crucial in the degradation of human O- and N-glycans, namely sialidases, beta-D-N-acetyl-glucosaminidase, beta-D-N-acetyl-galactosaminidase, and/or beta-D-mannosidase. Thirteen of these clones were selected based on their diversified functional profiles and were further analyzed on a secondary screening. This step consisted of lectin binding assays to demonstrate the ability of the clones to degrade human intestinal mucus. In total, the structural modification of several mucin motifs, sialylated mucin ones in particular, was evidenced for nine clones. Sequencing their metagenomic loci highlighted complex catabolic pathways involving the complementary functions of glycan sensing, transport, hydrolysis, deacetylation, and deamination, which were sometimes associated with amino acid metabolism machinery. These loci are assigned to several Bacteroides and Feacalibacterium species highly prevalent and abundant in the gut microbiome and explain the metabolic flexibility of gut bacteria feeding both on dietary and human glycans

    Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication

    Get PDF
    Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes-a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes-and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement

    Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication

    Get PDF
    Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes-a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes-and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement. (Résumé d'auteur
    • 

    corecore