26 research outputs found

    Novel derivatives of nicotinamide adenine dinucleotide (NAD) and their biological evaluation against NAD-consuming enzymes

    Get PDF
    Nicotinamide adenine dinucleotide (β-NAD+) is a primary metabolite involved in fundamental biological processes. Its molecular structure with characteristic functional groups, such as the quaternary nitrogen of the nicotinamide ring, and the two high-energy pyrophosphate and nicotinamide N-glycosidic bonds, allows it to undergo different reactions depending on the reactive moiety. Well known as a redox substrate owing to the redox properties of the nicotinamide ring, β-NAD+ is also fundamental as a substrate of NAD+-consuming enzymes that cleave either high-energy bonds to catalyse their reactions. In this study, a panel of novel adenine-modified NAD+ derivatives was synthesized and biologically evaluated against different NAD+-consuming enzymes. The synthesis of NAD+ derivatives, modified in position 2, 6 or 8 of the adenine ring with aryl/heteroaryl groups, was accomplished by Suzuki-Miyaura cross-couplings. Their biological activity as inhibitors and/or non-natural substrates was assessed against a selected range of NAD+-consuming enzymes. The fluorescence of 8-aryl/heteroaryl NAD+ derivatives allowed their use as biochemical probes for the development of continuous biochemical assays to monitor NAD+-consuming enzyme activities. The introduction of different substituents in position 8 on the adenine ring allowed the modulation of their fluorescence, resulting in the development of more sensitive and alternative probes compared to the known fluorophore ξ-NAD+. The different substitutions introduced on the adenine ring also allowed us to probe the active site of an NAD+-dependent bacterial DNA ligase. The selective activity of 8-aryl/heteroaryl NAD+ derivatives against different NAD+-consuming enzymes offers excellent opportunities for their application as tool compounds in in-vitro/in-vivo studies, and as inhibitor templates for drug discovery

    PEERS’ ANATOMY: teaching among students as an original approach to learning anatomy – a project made in Alma Mater

    Get PDF
    Anatomy is an ancient discipline which benefited greatly from technological improvements. Those very same technologies, along with a shift towards more clinically relevant topics, might be endangering anatomy’s central role as a cornerstone of medical education. A review of local realities showed anatomy to be quite uniformly taught by means of lectures alone. On the basis of our own experience, and comforted by references in literature (Day et al. [1]), we propose a revaluation of the teaching approach to anatomy, which includes an integration between different available resources and, above all, introduces peer-to-peer activity. Over the course of the last decade, based on a proposal from the Anatomy Department, more and more medical students took part to gross anatomy workshops abroad, thus consolidating what today is a large group of tutors. Working in parallel with the lectures, back home these students organize activities where notions are not a mere tool to pass the exam, but are aimed at giving younger students solid foundations on which to build their future competence. On the grounds of the experiences acquired in these years, we managed to divide the tutoring activities into six areas: surface and topographic anatomy, muscles and skeleton, heart and thorax, neuroanatomy, abdomen and pelvis, didactic coordination. Each group is based on the equal division of tasks and on respecting each tutor’s expertise, attitudes and skills. These workshops have proved to be highly effective both for students, as a chance to experience anatomy “hands-on”, and for tutors, as an opportunity of mastering the subject. Being appointed a tutor outlines a shift from a deductive learning method, typical of the pre-exam phase, to an inductive one, more useful in the future as medicine doctors. To sum up, the availability of adequate facilities for cadaveric dissection certainly enhances the teaching of anatomy; what our experience shows, however, is that only direct involvement of students as tutors brings out the full potential of these activities. We therefore propose abandoning a pure “learning-to-do” approach, in favour of a more effective “learning-by- doing” strategy

    A novel fluorescent probe for NAD-consuming enzymes

    Get PDF
    A novel, fluorescent NAD derivative is processed as substrate by three different NAD-consuming enzymes. The new probe has been used to monitor enzymatic activity in a continuous format by changes in fluorescence and, in one case, to directly visualize alternative reaction pathways

    Chemoenzymatic synthesis of fluorinated cellodextrins identifies a new allomorph for cellulose‐like materials

    Get PDF
    Understanding the fine details of the self-assembly of building blocks into complex hierarchical structures represents a major challenge en route to the design and preparation of soft-matter materials with specific properties. Enzymatically synthesised cellodextrins are known to have limited water solubility beyond DP9, a point at which they self-assemble into particles resembling the antiparallel cellulose II crystalline packing. We have prepared and characterised a series of site-selectively fluorinated cellodextrins with different degrees of fluorination and substitution patterns by chemoenzymatic synthesis. Bearing in mind the potential disruption of the hydrogen-bond network of cellulose II, we have prepared and characterised a multiply 6-fluorinated cellodextrin. In addition, a series of single site-selectively fluorinated cellodextrins was synthesised to assess the structural impact upon the addition of one fluorine atom per chain. The structural characterisation of these materials at different length scales, combining advanced NMR spectroscopy and microscopy methods, showed that a 6-fluorinated donor substrate yielded multiply 6-fluorinated cellodextrin chains that assembled into particles presenting morphological and crystallinity features, and intermolecular interactions, that are unprecedented for cellulose-like materials

    Biochemical and structural characterization of DNA ligases from bacteria and archaea

    Get PDF
    DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterization. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5′-phosphate of the DNA end that will ultimately be joined to the 3′-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use β-nicotinamide adenine dinucleotide (β-NAD+) as their co-factor whereas those that are essential in other cells use adenosine-5′-triphosphate (ATP) as their co-factor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of β-NAD+ affords multiple opportunities for chemical modification. Several recent studies have synthesized novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes.Several recent studies have synthesised novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or nonnatural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes

    Sialic acids in infection and their potential use in detection and protection against pathogens

    Get PDF
    In structural terms, the sialic acids are a large family of nine carbon sugars based around an alpha-keto acid core. They are widely spread in nature, where they are often found to be involved in molecular recognition processes, including in development, immunology, health and disease. The prominence of sialic acids in infection is a result of their exposure at the non-reducing terminus of glycans in diverse glycolipids and glycoproteins. Herein, we survey representative aspects of sialic acid structure, recognition and exploitation in relation to infectious diseases, their diagnosis and prevention or treatment. Examples covered span influenza virus and Covid-19, Leishmania and Trypanosoma, algal viruses, Campylobacter, Streptococci and Helicobacter, and commensal Ruminococci

    Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families

    No full text
    International audienceGlycoside phosphorylases (GPs) catalyze the phosphorolysis of glycans into the corresponding sugar 1-phosphates and shortened glycan chains. Given the diversity of natural β-(1→3)-glucans and their wide range of biotechnological applications, the identification of enzymatic tools that can act on β-(1→3)-glucooligosaccharides is an attractive area of research. GP activities acting on β-(1→3)-glucooligosaccharides have been described in bacteria, the photosynthetic excavate Euglena gracilis, and the heterokont Ochromonas spp. Previously, we characterized β-(1→3)-glucan GPs from bacteria and E. gracilis, leading to their classification in glycoside hydrolase family GH149. Here, we characterized GPs from Gram-positive bacteria and heterokont algae acting on β-(1→3)-glucooligosaccharides. We identified a phosphorylase sequence from Ochromonas spp. (OcP1) together with its orthologs from other species, leading us to propose the establishment of a new GH family, designated GH161. To establish the activity of GH161 members, we recombinantly expressed a bacterial GH161 gene sequence (PapP) from the Gram-positive bacterium Paenibacillus polymyxa ATCC 842 in Escherichia coli. We found that PapP acts on β-(1→3)-glucooligosaccharide acceptors with a degree of polymerization (DP) ≥ 2. This activity was distinct from that of characterized GH149 β-(1→3)-glucan phosphorylases, which operate on acceptors with DP ≥ 1. We also found that bacterial GH161 genes co-localize with genes encoding β-glucosidases and ATP-binding cassette transporters, highlighting a probable involvement of GH161 enzymes in carbohydrate degradation. Importantly, in some species, GH161 and GH94 genes were present in tandem, providing evidence that GPs from different CAZy families may work sequentially to degrade oligosaccharides

    Chemoenzymatic Synthesis of C6-Modified Sugar Nucleotides To Probe the GDP-d-Mannose Dehydrogenase from Pseudomonas aeruginosa

    No full text
    The chemoenzymatic synthesis of a series of C6-modified GDP-d-Man sugar nucleotides is described. This provides the first structure–function tools for the GDP-d-ManA producing GDP-d-mannose dehydrogenase (GMD) from Pseudomonas aeruginosa. Using a common C6 aldehyde functionalization strategy, chemical synthesis introduces deuterium enrichment, alongside one-carbon homologation at C6 for a series of mannose 1-phosphates. These materials are shown to be substrates for the GDP-mannose pyrophosphorylase from Salmonella enterica, delivering the required toolbox of modified GDP-d-Mans. C6-CH3 modified sugar-nucleotides are capable of reversibly preventing GDP-ManA production by GMD. The ketone product from oxidation of a C6-CH3 modified analogue is identified by high-resolution mass spectrometry

    Comparison of Ultem 9085 Used in Fused Deposition Modelling (FDM) with Polytherimide Blends

    No full text
    Polyetherimide (PEI) blends modified by either polycarbonate (PC) or polyethylene terephthalate glycol-modified (PETG) were prepared. The latter modifier (PETG) was an industrial grade widely used for fused deposition modelling (FDM) printing. PEI blends were compared to Ultem 9085, which is the standard PEI grade for FDM printing in advanced applications. All the blends were thoroughly characterized in terms of their rheological, morphological, thermomechanical and tensile properties. Ultem 9085 showed improved rheology for processing over standard PEI. PEI/PC blends with 10 wt % of modifier developed here closely matched the viscosity behavior of Ultem 9085. On the other hand, the blends with low PC content (i.e., less than 20 wt %) outperformed Ultem 9085 in terms of thermal and tensile properties. When PETG was added, similar tensile properties to Ultem 9085 were found. The immiscibility for PC contents higher than 20 wt % deteriorated the tensile properties, making it less attractive for applications, although melt viscosity decreased further for increasing PC contents

    Base-modified NAD and AMP derivatives and their activity against bacterial DNA ligases

    No full text
    We report the chemical synthesis and conformational analysis of a collection of 2-, 6- and 8-substituted derivatives of β-NAD+ and AMP, and their biochemical evaluation against NAD+-dependent DNA ligases from Escherichia coli and Mycobacterium tuberculosis. Bacterial DNA ligases are validated anti-microbial targets, and new strategies for their inhibition are therefore of considerable scientific and practical interest. Our study includes several pairs of β-NAD+ and AMP derivatives with the same substitution pattern at the adenine base. This has enabled the first direct comparison of co-substrate and inhibitor behaviour against bacterial DNA ligases. Our results suggest that an additional substituent in position 6 or 8 of the adenine base in β-NAD+ is detrimental for activity as either co-substrate or inhibitor. In contrast, substituents in position 2 are not only tolerated, but appear to give rise to a new mode of inhibition, which targets the conformational changes these DNA ligases undergo during catalysis. Using a molecular modelling approach, we highlight that these findings have important implications for our understanding of ligase mechanism and inhibition, and may provide a promising starting point for the rational design of a new class of inhibitors against NAD+-dependent DNA ligases
    corecore