4,915 research outputs found

    EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations

    Get PDF
    This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals

    Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons

    Get PDF
    A precise measurement of the neutron decay β\beta-asymmetry A0A_0 has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report A0=0.11966±0.000890.00140+0.00123A_0 = -0.11966 \pm 0.00089_{-0.00140}^{+0.00123}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon gA/gV=1.275900.00445+0.00409g_A/g_V = -1.27590_{-0.00445}^{+0.00409}.Comment: 5 pages, 2 figure

    New result for the neutron β\beta-asymmetry parameter A0A_0 from UCNA

    Full text link
    The neutron β\beta-decay asymmetry parameter A0A_0 defines the correlation between the spin of the neutron and the momentum of the emitted electron, which determines λ=gAgV\lambda=\frac{g_{A}}{g_{V}}, the ratio of the axial-vector to vector weak coupling constants. The UCNA Experiment, located at the Ultracold Neutron facility at the Los Alamos Neutron Science Center, is the first to measure such a correlation coefficient using ultracold neutrons (UCN). Following improvements to the systematic uncertainties and increased statistics, we report the new result A0=0.12054(44)stat(68)systA_0 = -0.12054(44)_{\mathrm{stat}}(68)_{\mathrm{syst}} which yields λgAgV=1.2783(22)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=0.12015(34)stat(63)systA_0=-0.12015(34)_{\mathrm{stat}}(63)_{\mathrm{syst}} and λgAgV=1.2772(20)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2772(20).Comment: 9 pages, 7 figures, updated to as-published versio

    Magnetic resonance microscopy and correlative histopathology of the infarcted heart

    Get PDF
    Altres ajuts:The present study was supported by the EU Joint Programming Initiative 'A Healthy Diet for a Healthy Life' (JPI HDHL INTIMIC-085), Generalitat Valenciana (GV/2018/116), INCLIVA and Universitat de Valencia (program VLC-BIOCLINIC 20-nanomIRM-2016A).Delayed enhancement cardiovascular magnetic resonance (MR) is the gold-standard for non-invasive assessment after myocardial infarction (MI). MR microscopy (MRM) provides a level of detail comparable to the macro objective of light microscopy. We used MRM and correlative histopathology to identify infarct and remote tissue in contrast agent-free multi-sequence MRM in swine MI hearts. One control group (n = 3 swine) and two experimental MI groups were formed: 90 min of ischemia followed by 1 week (acute MI = 6 swine) or 1 month (chronic MI = 5 swine) reperfusion. Representative samples of each heart were analysed by contrast agent-free multi-sequence (T1-weighting, T2-weighting, T2*-weighting, T2-mapping, and T2*-mapping). MRM was performed in a 14-Tesla vertical axis imager (Bruker-AVANCE 600 system). Images from MRM and the corresponding histopathological stained samples revealed differences in signal intensities between infarct and remote areas in both MI groups (p-value < 0.001). The multivariable models allowed us to precisely classify regions of interest (acute MI: specificity 92% and sensitivity 80%; chronic MI: specificity 100% and sensitivity 98%). Probabilistic maps based on MRM images clearly delineated the infarcted regions. As a proof of concept, these results illustrate the potential of MRM with correlative histopathology as a platform for exploring novel contrast agent-free MR biomarkers after MI

    Incidence, Outcomes, and Predictors of Ventricular Thrombus after Reperfused ST-Segment-Elevation Myocardial Infarction by Using Sequential Cardiac MR Imaging

    Full text link
    [EN] Purpose: To characterize the incidence, outcomes, and predictors of left ventricular (LV) thrombus by using sequential cardiac magnetic resonance (MR) imaging after ST-segment-elevation myocardial infarction (STEMI). Materials and Methods: Written informed consent was obtained from all patients, and the study protocol was approved by the committee on human research. In a cohort of 772 patients with STEMI, 392 (mean age, 58 years; range, 24-89 years) were retrospectively selected who were studied with cardiac MR imaging at 1 week and 6 months. Cardiac MR imaging guided the initiation and withdrawal of anticoagulants. Patients with LV thrombus at 6 months were restudied at 1 year. For predicting the occurrence of LV thrombus, a multiple regression model was applied. Results: LV thrombus was detected in 27 of 392 patients (7%): 18 (5%) at 1 week and nine (2%) at 6 months. LV thrombus resolved in 22 of 25 patients (88%) restudied within the first year. During a mean follow-up of 181 weeks 6 168, patients with LV thrombus displayed a very low rate of stroke (0%), peripheral embolism (0%), and severe hemorrhage (n = 1, 3.7%). LV ejection fraction (LVEF) less than 50% (P < .001) and anterior infarction (P = .008) independently helped predict LV thrombus. The incidence of LV thrombus was as follows: (a) nonanterior infarction, LVEF 50% or greater (one of 135, 1%); (b) nonanterior infarction, LVEF less than 50% (one of 50, 2%); (c) anterior infarction, LVEF 50% or greater (two of 92, 2%); and (d) anterior infarction, LVEF less than 50% (23 of 115, 20%) (P < .001 for the trend). Conclusion: Cardiac MR imaging contributes information for the diagnosis and therapy of LV thrombus after STEMI. Patients with simultaneous anterior infarction and LVEF less than 50% are at highest risk. (C) RSNA, 2017Study supported by Instituto de Salud Carlos III and FEDER (CB16/11/00486, PI14/00271, PIE15/00013) and Generalitat Valenciana (PROMETEO/2013/007).Cambronero-Cortinas, E.; Bonanad, C.; Monmeneu, J.; López-Lereu, M.; Gavara-Doñate, J.; De Dios, E.; Rios, C.... (2017). Incidence, Outcomes, and Predictors of Ventricular Thrombus after Reperfused ST-Segment-Elevation Myocardial Infarction by Using Sequential Cardiac MR Imaging. Radiology. 284(2):372-380. https://doi.org/10.1148/radiol.2017161898S372380284

    The 33S(n,α)30Si cross section measurement at n-TOF-EAR2 (CERN) : From 0.01 eV to the resonance region

    Get PDF
    The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n-TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT)
    corecore