342 research outputs found
Search for the Radiative Capture d+d->^4He+\gamma Reaction from the dd\mu Muonic Molecule State
A search for the muon catalyzed fusion reaction dd --> ^4He +\gamma in the
dd\mu muonic molecule was performed using the experimental \mu CF installation
TRITON and NaI(Tl) detectors for \gamma-quanta. The high pressure target filled
with deuterium at temperatures from 85 K to 800 K was exposed to the negative
muon beam of the JINR phasotron to detect \gamma-quanta with energy 23.8 MeV.
The first experimental estimation for the yield of the radiative deuteron
capture from the dd\mu state J=1 was obtained at the level n_{\gamma}\leq
2\times 10^{-5} per one fusion.Comment: 9 pages, 3 Postscript figures, submitted to Phys. At. Nuc
Strangelet search at RHIC
Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree
Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and
downstream from the interaction point along the beam axis where particles with
small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides
information about neutral energy deposition as a function of transverse
position in ZDCs. We report the preliminary results of strangelet search from a
triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin
Correlations in STAR: interferometry and event structure
STAR observes a complex picture of RHIC collisions where correlation effects
of different origins -- initial state geometry, semi-hard scattering,
hadronization, as well as final state interactions such as quantum intensity
interference -- coexist. Presenting the measurements of flow, mini-jet
deformation, modified hadronization, and the Hanbury Brown and Twiss effect, we
trace the history of the system from the initial to the final state. The
resulting picture is discussed in the context of identifying the relevant
degrees of freedom and the likely equilibration mechanism.Comment: 8 pages, 6 figures, plenary talk at the 5th International Conference
on Physics and Astrophysics of Quark Gluon Plasma, to appear in Journal of
Physics G (http://www.iop.org
Azimuthal anisotropy and correlations at large transverse momenta in p+p and Au+Au collisions at sqrt[sNN] = 200 GeV
Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sqrt[sNN]=200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+p at the same energy. The elliptic anisotropy v2 is found to reach its maximum at pt~3 GeV/c, then decrease slowly and remain significant up to pt ~ 7-10 GeV/c. Stronger suppression is found in the back-to-back high-pt particle correlations for particles emitted out of plane compared to those emitted in plane. The centrality dependence of v2 at intermediate pt is compared to simple models based on jet quenching
The T2K Side Muon Range Detector
The T2K experiment is a long baseline neutrino oscillation experiment aiming
to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam
is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed
with the 295 km distant Super- Kamiokande Detector and monitored by a suite of
near detectors at 280m from the proton target. The near detectors include a
magnetized off-axis detector (ND280) which measures the un-oscillated neutrino
flux and neutrino cross sections. The present paper describes the outermost
component of ND280 which is a side muon range detector (SMRD) composed of
scintillation counters with embedded wavelength shifting fibers and Multi-Pixel
Photon Counter read-out. The components, performance and response of the SMRD
are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference
Neutral Kaon Interferometry in Au+Au collisions at sqrt(s_NN) = 200 GeV
We present the first statistically meaningful results from two-K0s
interferometry in heavy-ion collisions. A model that takes the effect of the
strong interaction into account has been used to fit the measured correlation
function. The effects of single and coupled channel were explored. At the mean
transverse mass m_T = 1.07 GeV, we obtain the values R = 4.09 +/- 0.46 (stat.)
+/- 0.31 (sys) fm and lambda = 0.92 +/- 0.23 (stat) +/- 0.13 (sys), where R and
lambda are the invariant radius and chaoticity parameters respectively. The
results are qualitatively consistent with m_T systematics established with
pions in a scenario characterized by a strong collective flow.Comment: 11 pages, 10 figure
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi(0) detector
10 pages, 6 figures, Submitted to PRDhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.112010© 2015 American Physical Society11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PR
Search for short baseline nu(e) disappearance with the T2K near detector
8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA
- …