180 research outputs found
Evaluated activation cross section data for proton induced nuclear reactions on W up to 3 GeV incidence energy (KIT Scientific Reports ; 7628)
Evaluated cross-section data files were prepared for the stable tungsten isotopes to provide reliable and sound nuclear data for activation and inventory calculations of the European Spallation Source (ESS) which utilizes a tungsten target. The data files contain yields of radionuclides produced by proton induced reactions with incident energies up to 3 GeV. The data were obtained from the analysis of calculations using advanced nuclear models, available experimental data and systematics
Evaluated data files for n+ W and W irradiation at incident neutron energies up to 200 MeV
New evaluation of nuclear data was performed for tungsten isotopes W and W at incident neutron energies up to 200 MeV. Calculations were carried out using aspecial version of the TALYS code implementing the geometry dependent hybridmodel and models for the non-equilibrium light cluster emission.The evaluation was performed using the results of calculations, availablemeasured data, systematics predictions, and covariance information. The TEFALcode and the FOX code from the BEKED package were applied for the formatting ofthe data
Evaluated displacement and gas production cross-sections for materials irradiated with intermediate energy nucleons
International Conference on Nuclear Data for Science and Technology (ND) -- SEP 11-16, 2016 -- Bruges, BELGIUMWOS: 000426429500034Atomic displacement and gas production cross-sections were obtained for a number of materials to calculate radiation damage and gas production rate in nuclear-and fusion reactors, and neutron spallation sources. An advanced atomistic modelling approach was applied for calculations of the number of stable displacements in materials.Fusion for Energy [F4E-GRT-168.01, F4E-GRT-168.02]The work leading to this publication has been funded partially by Fusion for Energy under the Specific Grant Agreements F4E-GRT-168.01 and F4E-GRT-168.02. This publication reflects the views only of the authors, and Fusion for Energy cannot be held responsible for any use which may be made of the information contained therein
ITER oriented neutronics benchmark experiments on neutron streaming and shutdown dose rate at JET
Neutronics benchmark experiments are conducted at JET in the frame of WPJET3 NEXP within EUROfusion Consortium for validating the neutronics codes and tools used in ITER nuclear analyses to predict quantities such as the neutron flux along streaming paths and dose rates at the shutdown due to activated components. The preparation of neutron streaming and shutdown dose rate experiments for the future Deuterium-Tritium operations (DTE2 campaign) are in progress. This paper summarizes the status of measurements and analyses in progress in the current Deuterium–Deuterium (DD) campaign and the efforts in preparation for DTE2
The joint evaluated fission and fusion nuclear data library, JEFF-3.3
The joint evaluated fission and fusion nuclear data library 3.3 is described. New evaluations for neutron-induced interactions with the major actinides U, U and Pu, on Am and Na, Ni, Cr, Cu, Zr, Cd, Hf, W, Au, Pb and Bi are presented. It includes new fission yields, prompt fission neutron spectra and average number of neutrons per fission. In addition, new data for radioactive decay, thermal neutron scattering, gamma-ray emission, neutron activation, delayed neutrons and displacement damage are presented. JEFF-3.3 was complemented by files from the TENDL project. The libraries for photon, proton, deuteron, triton, helion and alpha-particle induced reactions are from TENDL-2017. The demands for uncertainty quantification in modeling led to many new covariance data for the evaluations. A comparison between results from model calculations using the JEFF-3.3 library and those from benchmark experiments for criticality, delayed neutron yields, shielding and decay heat, reveals that JEFF-3.3 performes very well for a wide range of nuclear technology applications, in particular nuclear energy
A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices
- …