190 research outputs found

    Tandem leader proteases of Grapevine leafroll-associated virus-2: Host-specific functions in the infection cycle

    Get PDF
    AbstractSeveral viruses in the genus Closterovirus including Grapevine leafroll-associated virus-2 (GLRaV-2), encode a tandem of papain-like leader proteases (L1 and L2) whose functional profiles remained largely uncharacterized. We generated a series of the full-length, reporter-tagged, clones of GLRaV-2 and demonstrated that they are systemically infectious upon agroinfection of an experimental host plant Nicotiana benthamiana. These clones and corresponding minireplicon derivatives were used to address L1 and L2 functions in GLRaV-2 infection cycle. It was found that the deletion of genome region encoding the entire L1–L2 tandem resulted in a ~100-fold reduction in minireplicon RNA accumulation. Five-fold reduction in RNA level was observed upon deletion of L1 coding region. In contrast, deletion of L2 coding region did not affect RNA accumulation. It was also found that the autocatalytic cleavage by L2 but not by L1 is essential for genome replication. Analysis of the corresponding mutants in the context of N. benthamiana infection launched by the full-length GLRaV-2 clone revealed that L1 or its coding region is essential for virus ability to establish infection, while L2 plays an accessory role in the viral systemic transport. Strikingly, when tagged minireplicon variants were used for the leaf agroinfiltration of the GLRaV-2 natural host, Vitis vinifera, deletion of either L1 or L2 resulted in a dramatic reduction of minireplicon ability to establish infection attesting to a host-specific requirement for tandem proteases in the virus infection cycle

    Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail

    Get PDF
    It has recently been found that among the 17 Arabidopsis myosins, six (XIC, XIE, XIK, XI-I, MYA1, and MYA2) have a major role in the motility of Golgi bodies and mitochondria in Nicotiana benthamiana and Nicotiana tabacum. Here, the same dominant negative tail fragments were also found to arrest the movement of Gogi bodies when transiently expressed in Arabidopsis plants. However, when a Golgi marker was transiently expressed in plants knocked out in these myosins, its movement was dramatically inhibited only in the xik mutant. In addition, a tail fragment of myosin XIK could inhibit the movement of several post-Golgi organelles, such as the trans-Golgi network, pre-vacuolar compartment, and endosomes, as well as total cytoplasmic streaming, suggesting that myosin XIK is a major player in cytoplasm kinetics. However, no co-localization of myosin tails with the arrested organelles was observed. Several deletion truncations of the myosin XIK tail were generated to corroborate function with localization. All deletion mutants possessing an inhibitory effect on organelle movement exhibited a diffuse cytoplasmic distribution. Point mutations in the tail of myosin XIK revealed that Arg1368 and Arg1443 are essential for its activity. These residues correspond to Lys1706 and Lys1779 from mouse myosin Va, which mediate the inhibitory head–tail interaction in this myosin. Therefore, such an interaction might underlie the dominant negative effect of truncated plant myosin tails and explain the mislocalization with target organelles

    Tubule-Guided Cell-to-Cell Movement of a Plant Virus Requires Class XI Myosin Motors

    Get PDF
    Cell-to-cell movement of plant viruses occurs via plasmodesmata (PD), organelles that evolved to facilitate intercellular communications. Viral movement proteins (MP) modify PD to allow passage of the virus particles or nucleoproteins. This passage occurs via several distinct mechanisms one of which is MP-dependent formation of the tubules that traverse PD and provide a conduit for virion translocation. The MP of tubule-forming viruses including Grapevine fanleaf virus (GFLV) recruit the plant PD receptors called Plasmodesmata Located Proteins (PDLP) to mediate tubule assembly and virus movement. Here we show that PDLP1 is transported to PD through a specific route within the secretory pathway in a myosin-dependent manner. This transport relies primarily on the class XI myosins XI-K and XI-2. Inactivation of these myosins using dominant negative inhibition results in mislocalization of PDLP and MP and suppression of GFLV movement. We also found that the proper targeting of specific markers of the Golgi apparatus, the plasma membrane, PD, lipid raft subdomains within the plasma membrane, and the tonoplast was not affected by myosin XI-K inhibition. However, the normal tonoplast dynamics required myosin XI-K activity. These results reveal a new pathway of the myosin-dependent protein trafficking to PD that is hijacked by GFLV to promote tubule-guided transport of this virus between plant cells

    In vitro synthesized RNA generated from cDNA clones of both genomic components of Cucurbit yellow stunting disorder virus replicates in cucumber protoplasts.

    Get PDF
    © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).Cucurbit yellow stunting disorder virus (CYSDV), a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ) comprising the 5'- and 3'-UTRs plus the 3'-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants.Peer reviewe
    corecore