182 research outputs found

    Trans-sialidase delivered as a naked DNA vaccine elicits an immunological response similar to a Trypanosoma cruzi infection

    Get PDF
    Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, does not synthesize sialic acid, but expresses a trans-sialidase (TS) that catalyzes the transfer of sialic acid from host glycoconjugates to the parasite surface. Here, we review studies that characterize the immune response to the catalytic domain of the enzyme in humans during Chagas' disease or in mice following immunization with the TS gene. In both cases, there are antibodies that strongly inhibit the enzymatic activity and generation of interferon-g-producing T cells.Universidade Federal de São Paulo (UNIFESP)Instituto Dante Pazzanese de Cardiologia do Estado de São PauloUNIFESPSciEL

    Determination of the viability of Toxoplasma gondii oocysts by PCR real-time after treatment with propidium monoazide

    Get PDF
    This study aimed to investigate a methodology for discriminating viable and non-viable T. gondii oocysts in water. Analyses included two steps: (i) microscopic investigation with vital dyes; (ii) molecular investigation, using a real time PCR (qPCR), after parasite treatment (or not) with propidium monoazide (PMA). The method was called qPCR-PMA. Oocyst aliquots were incubated (15 min) at 25 ºC or 100 ºC and analyzed by microscopy, after trypan blue and neutral red staining. Microscopic investigation determined viable and non-viable oocysts. For the molecular investigation, both aliquots of oocysts were treated with PMA. Non-viable oocysts, after PMA treatment, exhibited an inhibition of DNA amplification by qPCR. Although analyses were carried out with oocysts treated experimentally, these results suggest that qPCR-PMA can be a useful strategy to distinguish viable and non-viable T. gondiioocysts in water safety testing, showing if water is safe to drink

    Atypical disseminated leishmaniasis similar to post-kala-azar dermal leishmaniasis in a Brazilian AIDS patient infected with Leishmania (Leishmania) infantum chagasi: a case report

    Get PDF
    We report the case of an atypical disseminated leishmaniasis with similar clinical characteristics to post-kala-azar dermal leishmaniasis, an uncommon disease in South America. This occurred in a Brazilian patient with AIDS, 3 years after the first episode of American visceral leishmaniasis. (C) 2009 International Society for Infectious Diseases. Published by Elsevier B.V. All rights reserved.Inst Adolfo Lutz Registro, Parasitol Lab, BR-01246000 São Paulo, BrazilCtr Referencia DST, AIDS Santo Amaro, São Paulo, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilHosp Ipiranga, São Paulo, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilWeb of Scienc

    Performance of cryptococcal antigen lateral flow assay in serum, cerebrospinal fluid, whole blood, and urine in HIV-infected patients with culture-proven cryptococcal meningitis admitted at a Brazilian referral center

    Get PDF
    Cryptococcal meningitis is the most common cause of opportunistic meningitis in HIV-infected patients in Brazil and causes unacceptable high mortality rates. In this study, HIV-infected patients with a first episode of culture-proven cryptococcal meningitis in cerebrospinal fluid (CSF) were prospectively included in order to evaluate sensitivity of cryptococcal antigen (CrAg) lateral flow assay (LFA) in serum, CSF, whole blood (fingerstick), and fresh urine. In addition, HIV-infected patients with other neurological confirmed diseases were included in order to evaluate the specificity of CrAg LFA in serum. Twenty patients with cryptococcal meningitis were included and in 19 of them, CrAg LFA in CSF, serum, and whole blood were positive (95% sensitivity). In 18 patients, India ink test was positive in CSF (90% sensitivity), and in 16 cases, CrAg LFA was positive in urine (80% sensitivity). Thirty-six HIV-infected patients with other neurological diseases had negative results of CrAg LFA in serum (100% specificity). In conclusion, CrAg LFA in serum, CSF, and whole blood showed high sensitivity and specificity. Whole blood CrAg LFA seems to be a good and reliable strategy to improve AIDS-related cryptococcal meningitis diagnosis in Brazil

    Highlights of the São Paulo ISEV workshop on extracellular vesicles in cross-kingdom communication

    Get PDF
    In the past years, extracellular vesicles (EVs) have become an important field of research since EVs have been found to play a central role in biological processes. In pathogens, EVs are involved in several events during the host–pathogen interaction, including invasion, immunomodulation, and pathology as well as parasite–parasite communication. In this report, we summarised the role of EVs in infections caused by viruses, bacteria, fungi, protozoa, and helminths based on the talks and discussions carried out during the International Society for Extracellular Vesicles (ISEV) workshop held in São Paulo (November, 2016), Brazil, entitled Cross-organism Communication by Extracellular Vesicles: Hosts, Microbes and Parasites. © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.11Ysciescopu

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    Telomeric co-localization of the modified base J and contingency genes in the protozoan parasite Trypanosoma cruzi

    Get PDF
    Base J or β-d-glucosylhydroxymethyluracil is a modification of thymine residues within the genome of kinetoplastid parasites. In organisms known to contain the modified base, J is located mainly within the telomeric repeats. However, in Trypanosoma brucei, a small fraction of J is also located within the silent subtelomeric variant surface glycoprotein (VSG) gene expression sites, but not in the active expression site, suggesting a role for J in regulating telomeric genes involved in pathogenesis. With the identification of surface glycoprotein genes adjacent to telomeres in the South American Trypanosome, Trypanosoma cruzi, we became interested in the telomeric distribution of base J. Analysis of J and telomeric repeat sequences by J immunoblots and Southern blots following DNA digestion, reveals ∼25% of J outside the telomeric repeat sequences. Moreover, the analysis of DNA sequences immunoprecipitated with J antiserum, localized J within subtelomeric regions rich in life-stage-specific surface glycoprotein genes involved in pathogenesis. Interestingly, the pattern of J within these regions is developmentally regulated. These studies provide a framework to characterize the role of base J in the regulation of telomeric gene expression/diversity in T. cruzi

    Co-Administration of a Plasmid DNA Encoding IL-15 Improves Long-Term Protection of a Genetic Vaccine against Trypanosoma cruzi

    Get PDF
    Background: Immunization of mice with the Trypanosoma cruzi trans-sialidase (TS) gene using plasmid DNA, adenoviral vector, and CpG-adjuvanted protein delivery has proven highly immunogenic and provides protection against acute lethal challenge. However, long-term protection induced by TS DNA vaccines has not been reported. the goal of the present work was to test whether the co-administration of a plasmid encoding IL-15 (pIL-15) could improve the duration of protection achieved through genetic vaccination with plasmid encoding TS (pTS) alone.Methodology: We immunized BALB/c mice with pTS in the presence or absence of pIL-15 and studied immune responses [with TS-specific IFN-gamma ELISPOT, serum IgG ELISAs, intracellular cytokine staining (IFN-gamma, TNF-alpha, and IL-2), tetramer staining, and CFSE dilution assays] and protection against lethal systemic challenge at 1 to 6 months post vaccination. Mice receiving pTS alone developed robust TS-specific IFN-gamma responses and survived a lethal challenge given within the first 3 months following immunization. the addition of pIL-15 to pTS vaccination did not significantly alter T cell responses or protection during this early post-vaccination period. However, mice vaccinated with both pTS and pIL-15 challenged 6 months post-vaccination were significantly more protected against lethal T. cruzi challenges than mice vaccinated with pTS alone (P6 months post immunization. Also, these TS-specific T cells were better able to expand after in vitro restimulation.Conclusion: Addition of pIL-15 during genetic vaccination greatly improved long-term T cell survival, memory T cell expansion, and long-term protection against the important human parasite, T. cruzi.National Institutes of HealthFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Millennium Institute for Gene TherapySt Louis Univ, Dept Internal Med, St Louis, MO 63103 USAUniversidade Federal de São Paulo, Ctr Terapia Celular & Mol, Escola Paulista Med, São Paulo, BrazilSt Louis Univ, Dept Mol Microbiol, St Louis, MO 63103 USAUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Microbiol, Belo Horizonte, MG, BrazilUniversidade Federal de São Paulo, Ctr Terapia Celular & Mol, Escola Paulista Med, São Paulo, BrazilNational Institutes of Health: RO1 AI040196CNPq: 420067/2005-1Web of Scienc
    corecore