60 research outputs found

    A sequência de ensino como estratégia de articulação entre a competência (meta)linguística e a produção escrita do texto de opinião no ensino secundário.

    Get PDF
    A escrita argumentativa é uma das atividades mais complexas que os alunos realizam no final da escolaridade obrigatória. O grau de exigência desta aprendizagem explica “a necessidade da atenção contínua que lhe é conferida” (Rodrigues, 2020, p. 296). Uma das fontes de dificuldades textuais mais correntes, apontada em provas avaliativas (Rodrigues & Silvano, 2015), refere‐se ao plano da coesão textual e à conexão entre as partes do texto. Isto também indicia a falta de mobilização dos conhecimentos linguísticos, previsivelmente adquiridos pelos alunos, para resolverem estes problemas de escrita. Deste modo, considerando que é impossível escrever sem se envolver em atividades linguísticas em algum nível (Myhill & Jones, 2015), os géneros mais formais necessitam de ser aprendidos de modo sistemático na escola. Neste processo, é fulcral que estas atividades linguísticas sejam desenvolvidas de forma reflexiva (Gombert, 1992) e consciente, possibilitando um controle da linguagem na produção escrita (Vygotsky, 2001). Portanto, articular o domínio da gramática com o domínio da escrita seria uma forma de ativar os recursos linguísticos necessários à construção do texto, já que ensinar e aprender a escrever também requer reflexão sobre a linguagem e seus usos formais (Dolz, 2020).info:eu-repo/semantics/publishedVersio

    Proteomic and Isotopic Response of Desulfovibrio vulgaris to DsrC Perturbation

    Get PDF
    Dissimilatory sulfate reduction is a microbial energy metabolism that can produce sulfur isotopic fractionations over a large range in magnitude. Calibrating sulfur isotopic fractionation in laboratory experiments allows for better interpretations of sulfur isotopes in modern sediments and ancient sedimentary rocks. The proteins involved in sulfate reduction are expressed in response to environmental conditions, and are collectively responsible for the net isotopic fractionation between sulfate and sulfide. We examined the role of DsrC, a key component of the sulfate reduction pathway, by comparing wildtype Desulfovibrio vulgaris DSM 644T to strain IPFG07, a mutant deficient in DsrC production. Both strains were cultivated in parallel chemostat reactors at identical turnover times and cell specific sulfate reduction rates. Under these conditions, sulfur isotopic fractionations between sulfate and sulfide of 17.3 ± 0.5 or 12.6 ± 0.5 were recorded for the wildtype or mutant, respectively. The enzymatic machinery that produced these different fractionations was revealed by quantitative proteomics. Results are consistent with a cellular-level response that throttled the supply of electrons and sulfur supply through the sulfate reduction pathway more in the mutant relative to the wildtype, independent of rate. We conclude that the smaller fractionation observed in the mutant strain is a consequence of sulfate reduction that proceeded at a rate that consumed a greater proportion of the strains overall capacity for sulfate reduction. These observations have consequences for models of sulfate reducer metabolism and how it yields different isotopic fractionations, notably, the role of DsrC in central energy metabolism.publishersversionpublishe

    The Membrane QmoABC Complex Interacts Directly with the Dissimilatory Adenosine 5′-Phosphosulfate Reductase in Sulfate Reducing Bacteria

    Get PDF
    The adenosine 5′-phosphosulfate reductase (AprAB) is the enzyme responsible for the reduction of adenosine 5′-phosphosulfate (APS) to sulfite in the biological process of dissimilatory sulfate reduction, which is carried out by a ubiquitous group of sulfate reducing prokaryotes. The electron donor for AprAB has not been clearly identified, but was proposed to be the QmoABC membrane complex, since an aprBA–qmoABC gene cluster is found in many sulfate reducing and sulfur-oxidizing bacteria. The QmoABC complex is essential for sulfate reduction, but electron transfer between QmoABC and AprAB has not been reported. In this work we provide the first direct evidence that QmoABC and AprAB interact in Desulfovibrio spp., using co-immunoprecipitation, cross-linking Far-Western blot, tag-affinity purification, and surface plasmon resonance studies. This showed that the QmoABC–AprAB complex has a strong steady-state affinity (KD = 90 ± 3 nM), but has a transient character due to a fast dissociation rate. Far-Western blot identified QmoA as the Qmo subunit most involved in the interaction. Nevertheless, electron transfer from menaquinol analogs to APS through anaerobically purified QmoABC and AprAB could not be detected. We propose that this reaction requires the involvement of a third partner to allow electron flow driven by a reverse electron bifurcation process, i.e., electron confurcation. This process is deemed essential to allow coupling of APS reduction to chemiosmotic energy conservation

    A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea

    Get PDF
    The number of sequenced genomes of sulfate reducing organisms (SRO) has increased significantly in the recent years, providing an opportunity for a broader perspective into their energy metabolism. In this work we carried out a comparative survey of energy metabolism genes found in 25 available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii) are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H+-pyrophosphatases, complex I homologs, Rnf, and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases, and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H2, formate, pyruvate, NAD(P)H, β-oxidation, and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation

    Toward the Mechanistic Understanding of Enzymatic CO2 Reduction

    Get PDF
    SFRH/BD/116515/2014 PTDC/BBB-EBB/2723/2014 UID/Multi/04378/2019 grant agreement number 810856Reducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its catalytic characterization and crystal structures in oxidized and reduced states. The enzyme has very high activity for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidized and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mechanism of this conversion.publishersversionpublishe

    Brazilian dietary patterns and the dietary approaches to stop hypertension (DASH) diet-relationship with metabolic syndrome and newly diagnosed diabetes in the ELSA-Brasil study

    Get PDF
    Background: Studies evaluating dietary patterns, including the DASH diet, and their relationship with the metabolic syndrome and diabetes may help to understand the role of dairy products (low fat or full fat) in these conditions. Our aim is to identify dietary patterns in Brazilian adults and compare them with the (DASH) diet quality score in terms of their associations with metabolic syndrome and newly diagnosed diabetes in the Brazilian Longitudinal Study of Adult Health-the ELSA-Brasil study. Methods: The ELSA-Brasil is a multicenter cohort study comprising 15,105 civil servants, aged 35–74 years at baseline (2008–2010). Standardized interviews and exams were carried out, including an OGTT. We analyzed baseline data for 10,010 subjects. Dietary patterns were derived by principal component analysis. Multivariable logistic regression investigated associations of dietary patterns with metabolic syndrome and newly diagnosed diabetes and multivariable linear regression with components of metabolic syndrome. Results: After controlling for potential confounders, we observed that greater adherence to the Common Brazilian meal pattern (white rice, beans, beer, processed and fresh meats), was associated with higher frequencies of newly diagnosed diabetes, metabolic syndrome and all of its components, except HDL-C. Participants with greater intake of a Common Brazilian fast foods/full fat dairy/milk based desserts pattern presented less newly diagnosed diabetes. An inverse association was also seen between the DASH Diet pattern and the metabolic syndrome, blood pressure and waist circumference. Diet, light foods and beverages/low fat dairy pattern was associated with more prevalence of both outcomes, and higher fasting glucose, HDL-C, waist circumference (among men) and lower blood pressure. Vegetables/fruit dietary pattern did not protect against metabolic syndrome and newly diagnosed diabetes but was associated with lower waist circumference. Conclusions: The inverse associations found for the dietary pattern characterizing Brazilian fast foods and desserts, typically containing dairy products, with newly diagnosed diabetes, and for the DASH diet with metabolic syndrome, support previously demonstrated beneficial effects of dairy products in metabolism. The positive association with metabolic syndrome and newly diagnosed diabetes found for the pattern characterizing a typical Brazilian meal deserves further investigation, particularly since it is frequently accompanied by processed meat

    Proteomic and Isotopic Response of Desulfovibrio vulgaris to DsrC Perturbation

    Get PDF
    Dissimilatory sulfate reduction is a microbial energy metabolism that can produce sulfur isotopic fractionations over a large range in magnitude. Calibrating sulfur isotopic fractionation in laboratory experiments allows for better interpretations of sulfur isotopes in modern sediments and ancient sedimentary rocks. The proteins involved in sulfate reduction are expressed in response to environmental conditions, and are collectively responsible for the net isotopic fractionation between sulfate and sulfide. We examined the role of DsrC, a key component of the sulfate reduction pathway, by comparing wildtype Desulfovibrio vulgaris DSM 644T to strain IPFG07, a mutant deficient in DsrC production. Both strains were cultivated in parallel chemostat reactors at identical turnover times and cell specific sulfate reduction rates. Under these conditions, sulfur isotopic fractionations between sulfate and sulfide of 17.3 ± 0.5‰ or 12.6 ± 0.5‰ were recorded for the wildtype or mutant, respectively. The enzymatic machinery that produced these different fractionations was revealed by quantitative proteomics. Results are consistent with a cellular-level response that throttled the supply of electrons and sulfur supply through the sulfate reduction pathway more in the mutant relative to the wildtype, independent of rate. We conclude that the smaller fractionation observed in the mutant strain is a consequence of sulfate reduction that proceeded at a rate that consumed a greater proportion of the strains overall capacity for sulfate reduction. These observations have consequences for models of sulfate reducer metabolism and how it yields different isotopic fractionations, notably, the role of DsrC in central energy metabolism

    Isolation and Identification of Cytotoxic Compounds Present in Biomaterial Life®

    Get PDF
    Direct pulp capping consists of a procedure in which a material is directly placed over the exposed pulp to maintain dental vitality. Although still widely used in clinical practice, previous in vitro studies found that the biomaterial Life® presented high cytotoxicity, leading to cell death. This study aimed to identify the Life® constituents responsible for its cytotoxic effects on odontoblast-like cells (MDPC-23). Aqueous medium conditioned with Life® was subjected to liquid-liquid extraction with ethyl acetate. After solvent removal, cells were treated with residues isolated from the organic and aqueous fractions. MTT and Trypan blue assays were carried out to evaluate the metabolic activity and cell death. The organic phase residue promoted a significant decrease in metabolic activity and increased cell death. On the contrary, no cytotoxic effects were observed with the mixture from the aqueous fraction. Spectroscopic and spectrometric methods allowed the identification of the toxic compounds. A mixture of the regioisomers ortho, para, and meta of N-ethyl-toluenesulfonamide was identified as the agent responsible for the toxicity of biomaterial Life® in MDPC-23 cells. These findings contribute to improving biomaterial research and development

    Measuring adherence to inhaled control medication in patients with asthma: Comparison among an asthma app, patient self‐report and physician assessment

    Get PDF
    Background Previous studies have demonstrated the feasibility of using an asthma app to support medication management and adherence but failed to compare with other measures currently used in clinical practice. However, in a clinical setting, any additional adherence measurement must be evaluated in the context of both the patient and physician perspectives so that it can also help improve the process of shared decision making. Thus, we aimed to compare different measures of adherence to asthma control inhalers in clinical practice, namely through an app, patient self-report and physician assessment. Methods This study is a secondary analysis of three prospective multicentre observational studies with patients (≥13 years old) with persistent asthma recruited from 61 primary and secondary care centres in Portugal. Patients were invited to use the InspirerMundi app and register their inhaled medication. Adherence was measured by the app as the number of doses taken divided by the number of doses scheduled each day and two time points were considered for analysis: 1-week and 1-month. At baseline, patients and physicians independently assessed adherence to asthma control inhalers during the previous week using a Visual Analogue Scale (VAS 0–100). Results A total of 193 patients (72% female; median [P25–P75] age 28 [19–41] years old) were included in the analysis. Adherence measured by the app was lower (1 week: 31 [0–71]%; 1 month: 18 [0–48]%) than patient self-report (80 [60–95]) and physician assessment (82 [51–94]) (p 0.05). There was a moderate correlation between patient self-report and physician assessment (ρ = 0.596, p < 0.001). Conclusions Adherence measured by the app was lower than that reported by the patient or the physician. This was expected as objective measurements are commonly lower than subjective evaluations, which tend to overestimate adherence. Nevertheless, the low adherence measured by the app may also be influenced by the use of the app itself and this needs to be considered in future studies.info:eu-repo/semantics/publishedVersio
    corecore