1,608 research outputs found

    Sustainable fish feeds: potential of emerging protein sources in diets for juvenile turbot (Scophthalmus maximus) in RAS

    Get PDF
    In Europe, turbot aquaculture has a high potential for sustainable production, but the low tolerance to fishmeal replacement in the diet represents a big issue. Therefore, this study investigated the effects of more sustainable feed formulations on growth and feed performance, as well as nutritional status of juvenile turbot in recirculating aquaculture systems. In a 16-week feeding trial with 20 g juvenile turbot, one control diet containing traditional fishmeal, fish oil and soy products and two experimental diets where 20% of the fishmeal was replaced either with processed animal proteins (PAP) or with terrestrial plant proteins (PLANT) were tested. Irrespective of diets, growth performance was similar between groups, whereas the feed performance was significantly reduced in fish of the PAP group compared to the control. Comparing growth, feed utilisation and biochemical parameters, the results indicate that the fish fed on PAP diet had the lowest performance. Fish fed the PLANT diet had similar feed utilisation compared to the control, whereas parameters of the nutritional status, such as condition factor, hepato-somatic index and glycogen content showed reduced levels after 16 weeks. These effects in biochemical parameters are within the physiological range and therefore not the cause of negative performance. Since growth was unaffected, the lower feed performance of fish that were fed the PAP formulation might be balanced by the cost efficient formulation in comparison to the commercial and the PLANT formulations. Present study highlights the suitability of alternative food formulation for farmed fish

    Copper light-catching electrodes for organic photovoltaics

    Get PDF
    Optically thin copper films with a random array of sub-optical wavelength apertures couple strongly with light in the wavelength range 600-800 nm due to excitation of surface plasmonic resonances. Herein we show that this trapped light can be used to excite electronic transitions in a nearby strongly absorbing organic semiconductor before the plasmonic excitations dissipate their energy as heat into the metal. This energy transfer process is demonstrated using model small molecule and polymer photovoltaic devices (based on chloro-aluminium phthalocyanine : C60 and PCE-10 : PC70BM heterojunctions respectively) in conjunction with a nano-hole copper electrode formed by thermal annealing an optically thin Cu film supported on polyethylene terephthalate. The efficiency of this process is shown to be highest for wavelengths in the range 650-750 nm, which is part of the solar spectrum that is weakly absorbed by today’s high performance organic photovoltaic devices, and so these findings demonstrate that this type of electrode could prove useful as a low cost light catching element in high performance organic photovoltaics

    Conducting poly(3,4-ethylenedioxythiophene) materials with sustainable carrageenan counter-ions and their thermoelectric properties

    Get PDF
    The preparation and properties of conducting polymers comprising poly(3,4-ethylenedioxythiophene) (PEDOT) and two types of carrageenan – each on their own or combined – as counter-ions are described. The aim of the work is to provide alternative, more sustainable materials that can complement the existing variety of conducting polymers based on the same doped poly(thiophene) derivative. The materials were prepared using chemical oxidation of the 3,4-ethylenedioxythiophene (EDOT) monomer in water. The naturally-occurring polymers kappa- and lambda-carrageenan (bearing one and three sulphate groups per disaccharide monomer unit, respectively) were present during the polymerisation, and are proved to be present in the final composite by infrared and X-ray photoelectron spectroscopies and matrix-assisted laser desorption-ionisation mass spectrometry. The materials produced in this work show good conductivity in thin film form by casting from suspensions (between 1 and 14 S cm−1) and in addition show thermoelectric properties that make them attractive for a range of functionalities

    Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect

    Get PDF
    In this work, we present a method to enhance the longitudinal spin Seebeck effect at platinum/yttrium iron garnet (Pt/YIG) interfaces. The introduction of a partial interlayer of bismuth selenide (Bi2Se3, 2.5% surface coverage) interfaces significantly increases (by ∌380%–690%) the spin Seebeck coefficient over equivalent Pt/YIG control devices. Optimal devices are prepared by transferring Bi2Se3 nanoribbons, prepared under anaerobic conditions, onto the YIG (111) chips followed by rapid over-coating with Pt. The deposited Pt/Bi2Se3 nanoribbon/YIG assembly is characterized by scanning electron microscope. The expected elemental compositions of Bi2Se3 and YIG are confirmed by energy dispersive x-ray analysis. A spin Seebeck coefficient of 0.34–0.62 ΌV/K for Pt/Bi2Se3/YIG is attained for our devices, compared to just 0.09 ΌV/K for Pt/YIG controls at a 12 K thermal gradient and a magnetic field swept from −50 to +50 mT. Superconducting quantum interference device magnetometer studies indicate that the magnetic moment of Pt/Bi2Se3/YIG treated chips is increased by ∌4% vs control Pt/YIG chips (i.e., a significant increase vs the ±0.06% chip mass reproducibility). Increased surface magnetization is also detected in magnetic force microscope studies of Pt/Bi2Se3/YIG, suggesting that the enhancement of spin injection is associated with the presence of Bi2Se3 nanoribbons

    Need satisfaction in intergroup contact:A multinational study of pathways toward social change

    Get PDF
    none43siFinanziamenti esterni a vari co-autoriWhat role does intergroup contact play in promoting support for social change toward greater social equality? Drawing on the needs-based model of reconciliation, we theorized that when inequality between groups is perceived as illegitimate, disadvantaged group members will experience a need for empowerment and advantaged group members a need for acceptance. When intergroup contact satisfies each group's needs, it should result in more mutual support for social change. Using four sets of survey data collected through the Zurich Intergroup Project in 23 countries, we tested several preregistered predictions, derived from the above reasoning, across a large variety of operationalizations. Two studies of disadvantaged groups (Ns = 689 ethnic minority members in Study 1 and 3,382 sexual/gender minorities in Study 2) support the hypothesis that, after accounting for the effects of intergroup contact and perceived illegitimacy, satisfying the need for empowerment (but not acceptance) during contact is positively related to support for social change. Two studies with advantaged groups (Ns = 2,937 ethnic majority members in Study 3 and 4,203 cis-heterosexual individuals in Study 4) showed that, after accounting for illegitimacy and intergroup contact, satisfying the need for acceptance (but also empowerment) is positively related to support for social change. Overall, findings suggest that intergroup contact is compatible with efforts to promote social change when group-specific needs are met. Thus, to encourage support for social change among both disadvantaged and advantaged group members, it is essential that, besides promoting mutual acceptance, intergroup contact interventions also give voice to and empower members of disadvantaged groups.mixedHĂ€ssler, Tabea; Ullrich, Johannes; Sebben, Simone; Shnabel, Nurit; Bernardino, Michelle; Valdenegro, Daniel; Van Laar, Colette; GonzĂĄlez, Roberto; Visintin, Emilio Paolo; Tropp, Linda R; Ditlmann, Ruth K; Abrams, Dominic; Aydin, Anna Lisa; Pereira, Adrienne; Selvanathan, Hema Preya; von Zimmermann, Jorina; Lantos, NĂłra Anna; Sainz, Mario; Glenz, Andreas; Kende, Anna; OberpfalzerovĂĄ, Hana; Bilewicz, Michal; Branković, Marija; Noor, Masi; Pasek, Michael H; Wright, Stephen C; ĆœeĆŸelj, Iris; Kuzawinska, Olga; Maloku, Edona; Otten, Sabine; Gul, Pelin; Bareket, Orly; Corkalo Biruski, Dinka; Mugnol-Ugarte, Luiza; Osin, Evgeny; Baiocco, Roberto; Cook, Jonathan E; Dawood, Maneeza; Droogendyk, Lisa; Loyo, AngĂ©lica Herrera; Jelić, Margareta; Kelmendi, Kaltrina; Pistella, JessicaHĂ€ssler, Tabea; Ullrich, Johannes; Sebben, Simone; Shnabel, Nurit; Bernardino, Michelle; Valdenegro, Daniel; Van Laar, Colette; GonzĂĄlez, Roberto; Visintin, Emilio Paolo; Tropp, Linda R; Ditlmann, Ruth K; Abrams, Dominic; Aydin, Anna Lisa; Pereira, Adrienne; Selvanathan, Hema Preya; von Zimmermann, Jorina; Lantos, NĂłra Anna; Sainz, Mario; Glenz, Andreas; Kende, Anna; OberpfalzerovĂĄ, Hana; Bilewicz, Michal; Branković, Marija; Noor, Masi; Pasek, Michael H; Wright, Stephen C; ĆœeĆŸelj, Iris; Kuzawinska, Olga; Maloku, Edona; Otten, Sabine; Gul, Pelin; Bareket, Orly; Corkalo Biruski, Dinka; Mugnol-Ugarte, Luiza; Osin, Evgeny; Baiocco, Roberto; Cook, Jonathan E; Dawood, Maneeza; Droogendyk, Lisa; Loyo, AngĂ©lica Herrera; Jelić, Margareta; Kelmendi, Kaltrina; Pistella, Jessic

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality

    Get PDF
    AG has received support by NordForsk Nordic Trial Alliance (NTA) grant, by Academy of Finland Fellow grant N. 323116 and the Academy of Finland for PREDICT consortium N. 340541. The Richards research group is supported by the Canadian Institutes of Health Research (CIHR) (365825 and 409511), the Lady Davis Institute of the Jewish General Hospital, the Canadian Foundation for Innovation (CFI), the NIH Foundation, Cancer Research UK, Genome QuĂ©bec, the Public Health Agency of Canada, the McGill Interdisciplinary Initiative in Infection and Immunity and the Fonds de Recherche QuĂ©bec SantĂ© (FRQS). TN is supported by a research fellowship of the Japan Society for the Promotion of Science for Young Scientists. GBL is supported by a CIHR scholarship and a joint FRQS and QuĂ©bec Ministry of Health and Social Services scholarship. JBR is supported by an FRQS Clinical Research Scholarship. Support from Calcul QuĂ©bec and Compute Canada is acknowledged. TwinsUK is funded by the Welcome Trust, the Medical Research Council, the European Union, the National Institute for Health Research-funded BioResource and the Clinical Research Facility and Biomedical Research Centre based at Guy’s and St. Thomas’ NHS Foundation Trust in partnership with King’s College London. The Biobanque QuĂ©bec COVID19 is funded by FRQS, Genome QuĂ©bec and the Public Health Agency of Canada, the McGill Interdisciplinary Initiative in Infection and Immunity and the Fonds de Recherche QuĂ©bec SantĂ©. These funding agencies had no role in the design, implementation or interpretation of this study. The COVID19-Host(a)ge study received infrastructure support from the DFG Cluster of Excellence 2167 “Precision Medicine in Chronic Inflammation (PMI)” (DFG Grant: “EXC2167”). The COVID19-Host(a)ge study was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). Genotyping in COVID19-Host(a)ge was supported by a philantropic donation from Stein Erik Hagen. The COVID GWAs, Premed COVID-19 study (COVID19-Host(a)ge_3) was supported by "Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"and also by the Instituto de Salud Carlos III (CIBERehd and CIBERER). Funding comes from COVID-19-GWAS, COVID-PREMED initiatives. Both of them are supported by "Consejeria de Salud y Familias" of the Andalusian Government. DMM is currently funded by the the Andalussian government (Proyectos EstratĂ©gicos-Fondos Feder PE-0451-2018). The Columbia University Biobank was supported by Columbia University and the National Center for Advancing Translational Sciences, NIH, through Grant Number UL1TR001873. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or Columbia University. The SPGRX study was supported by the ConsejerĂ­a de EconomĂ­a, Conocimiento, Empresas y Universidad #CV20-10150. The GEN-COVID study was funded by: the MIUR grant “Dipartimenti di Eccellenza 2018-2020” to the Department of Medical Biotechnologies University of Siena, Italy; the “Intesa San Paolo 2020 charity fund” dedicated to the project NB/2020/0119; and philanthropic donations to the Department of Medical Biotechnologies, University of Siena for the COVID-19 host genetics research project (D.L n.18 of March 17, 2020). Part of this research project is also funded by Tuscany Region “Bando Ricerca COVID-19 Toscana” grant to the Azienda Ospedaliero Universitaria Senese (CUP I49C20000280002). Authors are grateful to: the CINECA consortium for providing computational resources; the Network for Italian Genomes (NIG) (http://www.nig.cineca.it) for its support; the COVID-19 Host Genetics Initiative (https://www.covid19hg.org/); the Genetic Biobank of Siena, member of BBMRI-IT, Telethon Network of Genetic Biobanks (project no. GTB18001), EuroBioBank, and RD-Connect, for managing specimens. Genetics against coronavirus (GENIUS), Humanitas University (COVID19-Host(a)ge_4) was supported by Ricerca Corrente (Italian Ministry of Health), intramural funding (Fondazione Humanitas per la Ricerca). The generous contribution of Banca Intesa San Paolo and of the Dolce&Gabbana Fashion Firm is gratefully acknowledged. Data acquisition and sample processing was supported by COVID-19 Biobank, Fondazione IRCCS CĂ  Granda Milano; LV group was supported by MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016-02364358, Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, the European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- “Liver Investigation: Testing Marker Utility in Steatohepatitis”, Programme “Photonics” under grant agreement “101016726” for the project “REVEAL: Neuronal microscopy for cell behavioural examination and manipulation”, Fondazione Patrimonio Ca’ Granda “Liver Bible” PR-0361. DP was supported by Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, CV PREVITAL “Strategie di prevenzione primaria nella popolazione Italiana” Ministero della Salute, and Associazione Italiana per la Prevenzione dell’Epatite Virale (COPEV). Genetic modifiers for COVID-19 related illness (BeLCovid_1) was supported by the "Fonds Erasme". The Host genetics and immune response in SARS-Cov-2 infection (BelCovid_2) study was supported by grants from Fondation LĂ©on Fredericq and from Fonds de la Recherche Scientifique (FNRS). The INMUNGEN-CoV2 study was funded by the Consejo Superior de Investigaciones CientĂ­ficas. KUL is supported by the German Research Foundation (LU 1944/3-1) SweCovid is funded by the SciLifeLab/KAW national COVID-19 research program project grant to Michael Hultström (KAW 2020.0182) and the Swedish Research Council to Robert Frithiof (2014-02569 and 2014-07606). HZ is supported by Jeansson Stiftelser, Magnus Bergvalls Stiftelse. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping for the COMRI cohort was performed and funded by the Genotyping Laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki, Helsinki, Finland. These funding agencies had no role in the design, implementation or interpretation of this study.Background: There is considerable variability in COVID-19 outcomes amongst younger adults—and some of this variation may be due to genetic predisposition. We characterized the clinical implications of the major genetic risk factor for COVID-19 severity, and its age-dependent effect, using individual-level data in a large international multi-centre consortium. Method: The major common COVID-19 genetic risk factor is a chromosome 3 locus, tagged by the marker rs10490770. We combined individual level data for 13,424 COVID-19 positive patients (N=6,689 hospitalized) from 17 cohorts in nine countries to assess the association of this genetic marker with mortality, COVID-19-related complications and laboratory values. We next examined if the magnitude of these associations varied by age and were independent from known clinical COVID-19 risk factors. Findings: We found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (hazard ratio [HR] 1·4, 95% confidence interval [CI] 1·2–1·6) and COVID-19 related mortality (HR 1·5, 95%CI 1·3–1·8). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (odds ratio [OR] 2·0, 95%CI 1·6-2·6), venous thromboembolism (OR 1·7, 95%CI 1·2-2·4), and hepatic injury (OR 1·6, 95%CI 1·2-2·0). Risk allele carriers ≀ 60 years had higher odds of death or severe respiratory failure (OR 2·6, 95%CI 1·8-3·9) compared to those > 60 years OR 1·5 (95%CI 1·3-1·9, interaction p-value=0·04). Amongst individuals ≀ 60 years who died or experienced severe respiratory COVID-19 outcome, we found that 31·8% (95%CI 27·6-36·2) were risk variant carriers, compared to 13·9% (95%CI 12·6-15·2%) of those not experiencing these outcomes. Prediction of death or severe respiratory failure among those ≀ 60 years improved when including the risk allele (AUC 0·82 vs 0·84, p=0·016) and the prediction ability of rs10490770 risk allele was similar to, or better than, most established clinical risk factors. Interpretation: The major common COVID-19 risk locus on chromosome 3 is associated with increased risks of morbidity and mortality—and these are more pronounced amongst individuals ≀ 60 years. The effect on COVID-19 severity was similar to, or larger than most established risk factors, suggesting potential implications for clinical risk management.Academy of Finland Fellow grant N. 323116Academy of Finland for PREDICT consortium N. 340541.Canadian Institutes of Health Research (CIHR) (365825 and 409511)Lady Davis Institute of the Jewish General HospitalCanadian Foundation for Innovation (CFI)NIH FoundationCancer Research UKGenome QuĂ©becPublic Health Agency of CanadaMcGill Interdisciplinary Initiative in Infection and Immunity and the Fonds de Recherche QuĂ©bec SantĂ© (FRQS)Japan Society for the Promotion of Science for Young ScientistsCIHR scholarship and a joint FRQS and QuĂ©bec Ministry of Health and Social Services scholarshipFRQS Clinical Research ScholarshipCalcul QuĂ©becCompute CanadaWelcome TrustMedical Research CouncEuropean UnionNational Institute for Health Research-funded BioResourceClinical Research Facility and Biomedical Research Centre based at Guy’s and St. Thomas’ NHS Foundation TrustKing’s College LondonGenome QuĂ©becPublic Health Agency of CanadaMcGill Interdisciplinary Initiative in Infection and ImmunityFonds de Recherche QuĂ©bec SantĂ©(DFG Grant: “EXC2167”)(CompLS grant 031L0165)Stein Erik Hagen"Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"Instituto de Salud Carlos III (CIBERehd and CIBERER)COVID-19-GWASCOVID-PREMED initiatives"Consejeria de Salud y Familias" of the Andalusian GovernmentAndalusian government (Proyectos EstratĂ©gicos-Fondos Feder PE-0451-2018)Columbia UniversityNational Center for Advancing Translational SciencesNIH Grant Number UL1TR001873ConsejerĂ­a de EconomĂ­a, Conocimiento, Empresas y Universidad #CV20-10150MIUR grant “Dipartimenti di Eccellenza 2018-2020”“Intesa San Paolo 2020 charity fund” dedicated to the project NB/2020/0119Tuscany Region “Bando Ricerca COVID-19 Toscana”CINECA consortiumNetwork for Italian Genomes (NIG)COVID-19 Host Genetics InitiativeGenetic Biobank of SienaEuroBioBankRD-ConnectRicerca Corrente (Italian Ministry of Health)Fondazione Humanitas per la RicercaBanca Intesa San PaoloDolce&Gabbana Fashion FirmCOVID-19 BiobankFondazione IRCCS CĂ  Granda MilanoMyFirst Grant AIRC n.16888Ricerca Finalizzata Ministero della Salute RF-2016-02364358Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoEuropean Union (EU) Programme Horizon 2020 (under grant agreement No. 777377)“Photonics” “101016726”Fondazione Patrimonio Ca’ Granda “Liver Bible” PR-0361CV PREVITAL “Strategie di prevenzione primaria nella popolazione Italiana” Ministero della Salute, and Associazione Italiana per la Prevenzione dell’Epatite Virale (COPEV)"Fonds Erasme"Fondation LĂ©on FredericqFonds de la Recherche Scientifique (FNRS)Consejo Superior de Investigaciones CientĂ­ficasGerman Research Foundation (LU 1944/3-1)SciLifeLab/KAW national COVID-19 research program project (KAW 2020.0182)Swedish Research Council (2014-02569 and 2014-07606)Jeansson Stiftelser, Magnus Bergvalls StiftelseTechnical University of Munich, Munich, GermanyGenotyping Laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki, Helsinki, Finlan

    Testing the cognitive effects of tadalafil. Neuropsychological secondary outcomes from the PASTIS trial

    Get PDF
    Cerebral small vessel disease (SVD) is a major cause of cognitive impairment in older people. As secondary endpoints in a phase-2 randomised clinical trial, we tested the effects of single administration of a widely-used PDE5 inhibitor, tadalafil, on cognitive performance in older people with SVD. In a double-blinded, placebo-controlled, cross-over trial, participants received tadalafil (20 mg) and placebo on two visits ≄ 7 days apart (randomised to order of treatment). The Montreal Cognitive Assessment (MOCA) was administered at baseline, alongside a measure to estimate optimal intellectual ability (Test of Premorbid Function). Then, before and after treatment, a battery of neuropsychological tests was administered, assessing aspects of attention, information processing speed, working memory and executive function. Sixty-five participants were recruited and 55 completed the protocol (N = 55, age: 66.8 (8.6) years, range 52–87; 15/40 female/male). Median MOCA score was 26 (IQR: 23, 27], range 15–30). No significant treatment effects were seen in any of the neuropsychological tests. There was a trend towards improved performance on Digit Span Forward (treatment effect 0.37, C.I. 0.01, 0.72; P = 0.0521). We did not identify significant treatment effects of single-administration tadalafil on neuropsychological performance in older people with SVD. The trend observed on Digit Span Forward may help to inform future studies
    • 

    corecore