15 research outputs found

    Friction and Wear Characteristics of C/Si Bi-layer Coatings Deposited on Silicon Substrate by DC Magnetron Sputtering

    Get PDF
    The tribological behavior of carbon/silicon bi-layer coatings deposited on a silicon substrate by DC magnetron sputtering was assessed and compared to that of amorphous carbon and silicon coatings. The motivation was to develop a wear resistant coating for silicon using thin layers of amorphous carbon and silicon. Wear tests were conducted by sliding a stainless steel ball against the coating specimens under applied normal loads in the range of 20 * 50 mN. Results showed that the wear rate of the bi-layer coating was strongly dependent on the ratio of thickness between the carbon and silicon layers. The wear rate of the bi-layer coating with 25 nm thick carbon and 102 nm thick silicon layers was about 48 and 20 times lower than that of the single-layer amorphous carbon and amorphous silicon coating, respectively. In addition, the steady-state friction coefficient of the bi-layer coating could be decreased to 0.09 by optimizing the thickness of the layer. Finally, a model for the wear reduction mechanism of the carbon/silicon bi-layer coating was proposed

    Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants

    Get PDF
    Diamond-like carbon coatings are increasingly used as wear-protective coatings for dental implants, artificial joints, etc. Despite their advantages, they may have several weak points such as high internal stress, poor adhesive properties or high sensitivity to ambient conditions. These weak points could be overcome in the case of a new carbon nanocomposite coating (CNC) deposited by using a C60 ion beam on a Co/Cr alloy. The structure of the coatings was investigated by Raman and XPS spectroscopy. The wear resistance was assessed by using a reciprocating tribotester under the loads up to 0.4 N in both dry and wet sliding conditions. Biocompatibility of the dental implants was tested in vivo on rabbits. Biocompatibility, bioactivity and mechanical durability of the CNC deposited on a Co/Cr alloy were investigated and compared with those of bulk Co/Cr and Ti alloys. The wear resistance of the CNC was found to be 250e650 fold higher compared to the Co/Cr and Ti alloys. Also, the CNC demonstrated much better biological properties with respect to formation of new tissues and absence of negative morphological parameters such as necrosis and demineralization. Development of the CNC is expected to aid in significant improvement of lifetime and quality of implants for dental applications

    Tribology of 2D Nanomaterials: A Review

    No full text
    The exfoliation of graphene has opened a new frontier in material science with a focus on 2D materials. The unique thermal, physical and chemical properties of these materials have made them one of the choicest candidates in novel mechanical and nano-electronic devices. Notably, 2D materials such as graphene, MoS2, WS2, h-BN and black phosphorus have shown outstanding lowest frictional coefficients and wear rates, making them attractive materials for high-performance nano-lubricants and lubricating applications. The objective of this work is to provide a comprehensive overview of the most recent developments in the tribological potentials of 2D materials. At first, the essential physical, wear and frictional characteristics of the 2D materials including their production techniques are discussed. Subsequently, the experimental explorations and theoretical simulations of the most common 2D materials are reviewed in regards to their tribological applications such as their use as solid lubricants and surface lubricant nano-additives. The effects of micro/nano textures on friction behavior are also reviewed. Finally, the current challenges in tribological applications of 2D materials and their prospects are discussed

    Tribology of multilayer coatings for wear reduction: A review

    No full text
    Abstract Friction and wear phenomena encountered in mechanical systems with moving components are directly related to efficiency, reliability and life of the system. Hence, minimizing and controlling these phenomena to achieve the desired system performance is crucial. Among the numerous strategies developed for reducing friction and wear, coatings have been successfully utilized in various engineering applications to mitigate tribological problems. One of the benefits of coatings is that they may be fabricated using a variety of materials in several different forms and structures to satisfy the requirements of the operating conditions. Among many types, coatings that are comprised of a combination of materials in the form of a multilayer have been gaining much interest due to the added degree of freedom in tailoring the coating property. In this paper, the properties and development status of multilayer coating systems for tribological applications were reviewed with the aim to gain a better understanding regarding their advantages and limitations. Specifically, focus was given to Ti-based and Cr-based coatings since Ti and Cr were identified as important elements in multilayer coating applications. Emphasis was given to materials, design concepts, mechanical properties, deposition method, and friction and wear characteristics of these types of coatings

    Multilayer Reflective Coatings for BEUV Lithography: A Review

    No full text
    The development of microelectronics is always driven by reducing transistor size and increasing integration, from the initial micron-scale to the current few nanometers. The photolithography technique for manufacturing the transistor needs to reduce the wavelength of the optical wave, from ultraviolet to the extreme ultraviolet radiation. One approach toward decreasing the working wavelength is using lithography based on beyond extreme ultraviolet radiation (BEUV) with a wavelength around 7 nm. The BEUV lithography relies on advanced reflective optics such as periodic multilayer film X-ray mirrors (PMMs). PMMs are artificial Bragg crystals having alternate layers of “light” and “heavy” materials. The periodicity of such a structure is relatively half of the working wavelength. Because a BEUV lithographical system contains at least 10 mirrors, the optics’ reflectivity becomes a crucial point. The increasing of a single mirror’s reflectivity by 10% will increase the system’s overall throughput six-fold. In this work, the properties and development status of PMMs, particularly for BEUV lithography, were reviewed to gain a better understanding of their advantages and limitations. Emphasis was given to materials, design concepts, structure, deposition method, and optical characteristics of these coatings

    Self-Healing Phenomenon and Dynamic Hardness of C<sub>60</sub>-Based Nanocomposite Coatings

    No full text
    The phenomenon of surface self-healing in C<sub>60</sub>-based polymer coatings deposited by ion-beam assisted physical vapor deposition was investigated. Nanoindentation of the coatings led to the formation of a protrusion rather than an indent. This protrusion was accompanied by an abnormal shape of the force–distance curve, where the unloading curve lies above the loading curve due to an additional force applied in pulling the indenter out of the media. The coatings exhibited a nanocomposite structure that was strongly affected by the ratio of C<sub>60</sub> ion and C<sub>60</sub> molecular beam intensities during deposition. The coatings also demonstrated the dynamic hardness effect, where the effective value of the hardness depends significantly on the indentation speed
    corecore