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Diamond-like carbon coatings are increasingly used as wear-protective coatings for dental implants,
artificial joints, etc. Despite their advantages, they may have several weak points such as high internal
stress, poor adhesive properties or high sensitivity to ambient conditions. These weak points could be
overcome in the case of a new carbon nanocomposite coating (CNC) deposited by using a Cgp ion beam
on a Co/Cr alloy. The structure of the coatings was investigated by Raman and XPS spectroscopy. The
wear resistance was assessed by using a reciprocating tribotester under the loads up to 0.4 N in both dry
and wet sliding conditions. Biocompatibility of the dental implants was tested in vivo on rabbits.
Biocompatibility, bioactivity and mechanical durability of the CNC deposited on a Co/Cr alloy were
investigated and compared with those of bulk Co/Cr and Ti alloys. The wear resistance of the CNC was
found to be 250—650 fold higher compared to the Co/Cr and Ti alloys. Also, the CNC demonstrated much
better biological properties with respect to formation of new tissues and absence of negative morpho-
logical parameters such as necrosis and demineralization. Development of the CNC is expected to aid in
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significant improvement of lifetime and quality of implants for dental applications.

© 2016 Published by Elsevier Ltd.

1. Introduction

The proper selection of an implant material is usually a
complicated process because the biocompatibility must be assured
together with sufficient durability and manufacturability of the
material. Most commonly used metals exhibit low chemical
passivity resulting in low biocompatibility and high corrosion of
the surface [1—6]. Use of relatively passive ceramics is also limited
because of their high brittleness [7]. These chemical and physical
limitations lead to an increase in the thickness and geometrical
dimensions of implants. It has been suggested that such issues may
be overcome by development of appropriate composite materials
[8—14]. However, the use of composite materials in implants in-
troduces new challenges. A composite, while in contact with bone
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tissue, should exhibit high delamination stability, high adhesion
and uniform contact [9—16]. Additionally, the coating and the
substrate materials of an implant should have similar mechanical
and physical properties such as thermal expansion coefficient and
Young's modulus.

Development of carbon-based functional coatings for biomed-
ical applications has been gaining increasing attention over the
recent years. The use of carbon-based composites has significantly
increased the wear resistance of implants [17—19]. Also, diamond-
like carbon (DLC) coatings have recently received much attention
because of their unique mechanical, chemical and thermal char-
acteristics [20,21]. The combination of low friction and high wear
resistant properties of DLC has increased the durability of precision
components and friction pairs such as artificial joints [22]. Also,
metallic implants with DLC coatings have demonstrated high
biocompatibility [17,22]. Unlike other coating materials, DLC does
not lead to blood coagulation. Instead, it effectively blocks the
diffusion of metal ions, and therefore, it may be used to coat im-
plants in contact with bone or soft tissues of the body. In fact,
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carbon-based materials have demonstrated the ability to coalesce
with surrounding tissues and to stimulate bone formation [23].

Non-hydrogenated DLC coatings can be deposited on different
substrates by various methods, including sputtering [24], pulsed-
laser deposition [25] or ion-beam deposition [26]. Each method
has its own advantages as well as disadvantages such as high levels
of internal stress, poor adhesive properties or high sensitivity to
ambient conditions. These disadvantages of DLC coatings could be
successfully overcome by using an accelerated fullerene ion beam
during the deposition of carbon nanocomposite coatings (CNCs)
[27—31]. The ion-beam deposition by using Cgo fullerene molecules
(instead of atomic carbon) allowed the formation of a new carbon-
based material with unique nanocomposite structure and low level
of internal stress [27,28], high adhesion to substrate [27] and low
amount of defects [31]. The microstructure of CNC consisted of
graphite nanocrystals embedded into an amorphous diamond-like
matrix [29]. The graphite nanocrystals had a well-defined prefer-
ential orientation of graphene planes that were perpendicular to
the surface [28]. It has been reported that the preferential orien-
tation of the graphite nanocrystals plays an important role in the
transition from biocompatibility of the coatings to their bioactivity,
because of the sufficient difference in chemical and biochemical
properties between the base and the edge directions of graphite
crystals [32]. The nanocomposite structure also showed a relatively
high ratio of hardness to Young's modulus, which led to better
matching between the mechanical properties of the coating and a
metallic substrate compared to DLC coatings deposited by tradi-
tional methods. Besides, thin DLC coatings usually have smooth
surface and tend to reproduce the initial topography of the sub-
strate [17]. CNCs deposited by the Cgg ion beam showed unique
nanoscale topography [29,30] that could be helpful for various
biological applications [33,34].

For a number of reasons mentioned above, the CNC deposited by
using a Cgp ion beam could lead to the development of a new class
of carbon coatings with excellent mechanical properties and
biocompatibility. In this study, the most important requirements of
a dental implant such as biocompatibility, bioactivity and wear
resistance of the carbon nanocomposite coated on a Co/Cr alloy by
Ceo ion beam deposition technique were investigated and
compared with those of bulk Co/Cr and Ti alloys. Methods used for
specimen fabrication and experimental details are described in the
following sections.

2. Materials and methods
2.1. Materials

Two types of metal alloys were used for preparation of the
specimens: cobalt-chromium alloy, Vitallium (Co 62%, Cr 30%, Mo
5%, and C 0.4%) and titanium alloy, VT1-0 (Ti 99% and Fe 0.25%).
Metallic plates with dimensions of 10 x 15 x 2 mm> were used.
Cgo—fullerene powder (99.5% purity; NeoTechProducts, St. Peters-
burg, Russia) was used as the source material for the deposition of
the CNCs.

2.2. Specimen preparation

CNCs were deposited on Co/Cr alloy plates by a Cgp ion beam
with an average ion energy of 7.5 keV. The deposition was per-
formed in a modified vacuum setup (VUP-5M, Selmi, Ukraine)
equipped with liquid-nitrogen traps. The base pressure was
1-10~% Pa, and the pressure of Ar during the deposition was
5-10~3 Pa. Two oppositely directed ion beams were formed at the
ion source with a saddle-shaped electric field. The first beam was
used for monitoring and the second one was used for deposition.

Cso vapor was supplied from two effusion cells, through a channel
in the anode, directly to the saddle point of the electric field. The
substrate temperature during the deposition was 250 °C.

Prior to loading the fullerene powders into the effusion cells,
they were cleaned by vacuum distillation. Before the deposition,
the loaded effusion cells were maintained under a high vacuum
(2-10~* Pa) at a temperature of 300 °C for 3 h. The temperature of
the effusion cells during deposition was above 500 °C. For deposi-
tion of uniform coatings over a large area, the substrates were
mounted on a holder that reciprocated back and forth across the
ion beam. More detailed descriptions of the deposition process are
available elsewhere [35,27].

2.3. Coating characterization

The structure and chemical composition of the coatings were
investigated using scanning electron microscopy (SEM; Jeol 6210)
in conjunction with energy-dispersive X-ray spectroscopy (OX-
FORD INCA Energy), Raman spectroscopy (LabRam Aramis) con-
ducted at a wavelength of 532 nm, and X-ray photoelectron
spectroscopy (XPS; Thermo Scientific K-Alpha). The thickness
measurements were performed after deposition of the coating
using a step method. Electrode potentials were measured using the
standard AgCl electrode for rating the initial activity of metals [3].
The measurements were conducted in an electrochemical cell filled
with physiological fluid (0.9% aqueous solution of NaCl). A standard
AgCl reference electrode was used.

2.4. Friction and wear testing

A commercial reciprocating tribo-tester (CETR UMT-2) was used
to investigate the wear behavior of the coating in both dry and wet
sliding conditions. Artificial saliva (Xerostomia Saliva; Kalmar) was
used as a media for the wet conditions. It should be noted that
artificial saliva is commonly used for simulation of the actual bio-
logical environment in various dental experiments [36]. All exper-
iments were performed under ambient temperature of
approximately 25 °C and relative humidity of 45—55% in a Class 100
clean room. The sliding speed was set to 4 mmy/s with a stroke of
2 mm, which corresponded to a sliding frequency of 1 Hz. Alumina
balls with a diameter of 1 mm were chosen as the pins because of
their high hardness and good chemical stability. An accelerated
wear testing method was used to shorten the experiment time [37].
Thus, the loading conditions were selected to be much more severe
compared to the actual biological environment. The normal load
was set to either 50 mN or 400 mN, depending on the wear re-
sistivity of the specimens. The corresponding maximum contact
pressure was estimated using the Hertzian equation [38]. The
repeatability of the experimental data was ensured by performing
the sliding tests at least three times for each set of experimental
conditions. A new pin was used for each experiment.

After the sliding tests, the amount of wear was assessed using a
3D laser microscope. The cross-sectional profiles of the wear tracks
were mapped using a laser beam at a wavelength of 408 nm. The
laser beam precisely scanned the specimen at a frame rate of 9 Hz
with a high resolution of 1024 x 768 pixels. The normalized wear
rate was then calculated by dividing the wear volume by the
number of sliding cycles and the applied normal load.

2.5. Biocompatibility evaluation

Rabbits (20 months old with a body mass of approximately 3 kg)
were separated into three groups for biocompatibility evaluation.
Subperiosteal implants made of Co/Cr alloy, titanium alloy and
nanocomposite-coated Co/Cr alloy were implanted in rabbits from
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the first, second and third groups, respectively. Rabbits were
sacrificed by air embolism at 12 weeks. The animal tests were
performed according to the requirements of the European
Convention and Ukrainian law.

After the rabbits were sacrificed, a fragment of the mandible,
including the implant and a portion of the adjacent bone
comprising an outer and an inner compact bone and spongy sub-
stance, was extracted. The extracted material was visually investi-
gated using an optical microscope (Leica Axiostar Plus). For the
microscopic investigation, the extracted fragments were fixed in
5 vol% nitric acid, then dehydrated in 96° ethanol and embedded
into celloidin [39]. Cross-sections with thicknesses of 7—10 pm
were colored with haematoxylin, eosin, and van Gieson's stain.
Morphometric investigations were concentrated on the following
characteristics: an estimation of the newly formed tissue between
the parent compact bone and the implant; the presence of necrosis
on the surface of the tissue adjacent to the implant; and assessment
of the nature of the restructuring of the compact and trabecular
bone [40].

2.6. Statistical analysis

For experiments in which there were at least three specimens
investigated, statistical analysis was performed using the Student's
t-test for two-tailed distributions with unequal variance. Signifi-
cance in the statistical analysis was assigned for p < 0.05.

3. Results
3.1. Structure and mechanical properties of CNCs

Analysis of the 3D laser microscope data indicated that the
thickness of the coating was approximately 300 nm. The surface
roughness (RMS) of the coatings was obtained by averaging the
roughness values of 5 random areas (100 um x 100 pm) on the
specimen surface. The average roughness value was determined to
be approximately 50 nm.

The properties of carbon coatings are known to be significantly
affected by their nanostructure. In particular, the hardness of the
carbon coating is largely determined by the concentration of sp’
bonds. Ratio of sp? and sp> bonds in the surface layers was deter-
mined directly by XPS analysis (Fig. 1a). Multi-peak fitting with the
Gauss-Lorentz function was used to determine the Cq5 peak com-
ponents. The C;s peak consisted of one major peak located at
2849 eV that corresponded to sp> bonds and a minor peak at
284 eV which represented sp? bonds [41]. The smaller side peaks
represented the C—0O and C(O)O compounds [42]. It should be
noted that oxygen was not incorporated during the deposition
process. Estimation of the absorption/desorption ratio [43] showed
that the amount oxygen atoms incorporated into the film during
deposition was quite negligible. Moreover, impact of energetic Cgo
ions led to the formation of acoustic waves resulting in desorption
of oxygen from the surface [44]. Therefore, the presence of these
low-intensity oxygen compound peaks could be attributed to the
surface absorption of oxygen in the atmosphere [45]. The per-
centage of sp> content was then calculated by taking the area
beneath the sp> peaks and dividing it by the total area beneath the
sp?, sp> peaks. The results indicated that the sp> concentration was
~67%.

Besides XPS, Raman analysis (Fig. 1b) was used for detailed
investigation of the nanostructure of DLC coatings. The Raman
spectrum for the CNC is shown in Fig. 1b. The spectrum was typical
of amorphous carbon and contained two peaks (referred to as D
and G components) between 1,000 and 1,800 cm ™. The exact po-
sitions of these components were calculated by fitting the
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Fig. 1. a) XPS spectra of the CNC-Co/Cr specimen. sp? peak at 284 eV, sp> peak at
284.9 eV, C—0 peak at 286.6 eV and C(0)O at 289 eV b) Raman spectra of the CNC-Co/
Cr specimen. D-peak at 1369 cm~! and G-peak at 1540 cm ™.

spectrum to a Gaussian function. The fitting results indicated that
the G peak was positioned at 1,540 cm~ .. The I(D)/I(G) ratio was
approximately 0.6. To interpret this result correctly, it should be
taken into account that under the excitation by visible light only the
configuration of sp? bonds could be characterized, and the con-
centration of sp> bonds could not be determined directly. The
presence of D and G components in the spectrum corresponded to a
“breathing” mode (i.e., a benzene-ring vibration in which the
diameter of the hexagonal structure changes) and a “stretching”
mode (i.e., vibrations of sp? carbon chains and benzene rings
stretching in one direction and compressing in the other), respec-
tively. These processes were related to the state of sp? bonds.

The position of the G-peak is affected by several structural fac-
tors such as the degree of disorder, presence of sp? chains and
clustering. The same factors are related to the concentration of sp>
bonds for DLC films deposited by accelerated carbon atoms under
room temperature. In this case, based on the model first proposed
by Ferrari and Robertson [46], the concentration of sp> bonds in the
coatings could be estimated based on the ratio of the intensities of
the D and G peaks and the shift in the position of the G peak. In the
case of the CNCs deposited by the Cgg ion beam, the relation be-
tween the sp> content and parameters of the D and G peaks was
more complicated. The calculation based on the Ferrari and Rob-
ertson model showed approximately 15% lower concentration of
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the sp® bonds compared to the XPS data and the estimation based
on the mechanical properties of the coatings. The concentration of
the sp> bonds was also estimated using an empirical formula pro-
posed by Cui et al. [47]. This estimation was based on the full-width
at half-maximum (FWHM) of the G peak. The FWHM(G) was
approximately 214 cm~!, corresponding to a 65% concentration of
sp> bonds, which was in good agreement with the estimation
provided by the XPS data.

Mechanical properties of the coating were assessed by using the
ultra-nano hardness testing method. The typical indentation curve
is shown in Supplementary Fig. S1. To avoid the substrate effect, the
indentation depth was maintained to be below 10% of the coating
thickness. Assuming the coating thickness of 300 nm, the
maximum indentation depth was set to 30 nm. The values of
hardness and Young's modulus were calculated to be 45 GPa and
417 GPa, respectively. Thus, the mechanical properties of the films
also indicated a high concentration of sp> bonds. Comparison be-
tween the XPS data and the estimation based on the mechanical
properties showed that FWHM (G) was the important characteristic
of the CNC which allowed the assessment of the amount of sp>
bonds.

The electrode potentials of all the specimens are shown in
Fig. S2. The lowest potential was exhibited by the bare Co/Cr alloy.
At the start of the test, the potential dropped to —0.32 V and then
gradually increased to —0.15 V. Bare titanium exhibited a higher
potential of approximately 0.05 V. The CNC deposited on the Co/Cr
alloy exhibited a positive potential during the tests; it slightly
decreased to 0.07 V during the first 3 min and then increased to
02 V.

3.2. Wear resistance

Sliding tests were performed using a reciprocating tribo-tester
to assess the friction and wear properties of the specimens. The
sliding tests were performed for 3,600 cycles under a normal load
of 50 mN for the bare Ti and Co/Cr alloys and 400 mN for the CNC-
Co/Cr specimen. A higher load was used for the coated specimen
based on its higher wear resistance as observed in a previous work
[27]. The contact stresses calculated by the Hertzian equation for
the normal loads of 50 mN and 400 mN were approximately
950 MPa and 1.8 GPa, respectively. The variation in the coefficient of
friction (COF) of the specimens with respect to sliding cycles after
three repeated tests, in dry and wet sliding conditions are shown in
Fig. 2a and b, respectively. In dry conditions (Fig. 2a), the average
COFs for the bare Ti and Co/Cr alloy specimens were 0.82 and 0.47,
respectively. However, the CNC-Co/Cr specimen showed a much
lower COF of 0.1 compared to the bare alloy specimens. In wet
conditions (Fig. 2b), the bare Ti and CoCr alloy specimens showed
relatively lower COFs of 0.43 and 0.38, respectively. The CNC-CoCr
specimen showed a slightly lower COF of 0.09 compared to the
dry sliding condition. The COF of the CNC-CoCr specimen was
almost the same under 50 and 400 mN loads in both dry and wet
sliding conditions. Fig. 3a and b summarize and compare the mean
COF values together with their deviations for all the specimens in
dry and wet sliding conditions for both normal loads.

In order to assess the lifetime of the CNC-Co/Cr specimen
extended sliding tests (72,000 cycles; 20 h) were performed. The
extended sliding tests were performed in dry sliding condition
rather than the wet condition in order to accelerate the wear pro-
cess. The coated specimen exhibited a very stable COF with no
significant fluctuation, indicating the presence of the CNC at the
contact interface, even after a large number of cycles under a
normal load of 400 mN (Fig. S3). The COF maintained a low value of
0.1 up to approximately 60,000 cycles, which corresponded to
approximately 17 h of sliding. Beyond 60,000 cycles, the COF
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Fig. 2. Coefficient of friction with respect to sliding cycles for the bare Ti and Co/Cr
alloy specimens under the normal load of 50 mN and the CNC-Co/Cr specimen under
the normal load of 400 mN in (a) dry and (b) wet conditions.

started to increase and reached a value of about 0.24 after 73,000
cycles, which indicated the gradual removal of the CNC from the
contact interface.

The wear resistance of the specimens was evaluated after the
sliding tests. The amount of wear was expressed as a normalized
wear rate that was obtained by dividing the wear volume by the
number of sliding cycles and the applied normal load [48]. The
mean wear rate values together with their deviations for all the
specimens in dry and wet sliding conditions are shown in Fig. 4. In
dry conditions, the wear rates for the Ti and Co/Cr alloy were
1.3 x 1077 mm3/N-mm and 8.8 x 10~% mm?/N-mm, respectively.
The CNC-Co/Cr specimen showed a significantly lower wear rate of
3.2 x 107 mm?/N-mm. The deposition of CNC on the Co/Cr alloy
resulted in approximately 100-fold decrease in the wear rate
compared to that of the bare Co/Cr specimen. Moreover, the coated
specimen exhibited a wear rate of approximately 400 times lower
than that of the Ti alloy specimen. As expected, the specimens
showed relatively lower wear rates in wet sliding conditions. The
corresponding wear rates for the Ti alloy, Co/Cr alloy and CNC-Co/Cr
were 7 x 107 mm®/N-mm, 3.8 x 10" mm?*/N-mm, and
11 x 107 mm3/N-mm, respectively.

In order to better understand the wear behavior of the CNC-Co/
Cr specimen, the amount of wear was evaluated at different
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Fig. 3. Comparison of the average COF values of bare Co/Cr and Ti alloy specimens and
CNC-Co/Cr specimen for different normal loads in (a) dry and (b) wet conditions.
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Fig. 4. Comparison of the wear rates of bare Co/Cr and Ti alloy specimens and CNC-Co/
Cr specimen.

number of sliding cycles. Fig. S4 shows the 3D laser microscope and
SEM images together with the 2D cross-sectional profiles of the
wear tracks of the CNC-Co/Cr specimen after 36,000 (Fig. S4a) and

72,000 (Fig. S4b) sliding cycles. The width and depth of the wear
track increased from ~75 um to ~250 nm, respectively, to ~90 pm
and ~1 pm as the number sliding cycles increased from 36,000 to
72,000. From this result, it was determined that the depth of wear
became greater than the thickness of the nanocomposite coating
after 72,000 cycles, which indicated that the coating was
completely removed between 36,000 and 72,000 cycles. Consid-
ering the sudden increase in the COF data after 60,000 cycles, it
could be postulated that failure of the coating occurred at this
point.

3.3. Biocompatibility

3.3.1. Co/Cr alloy

Biocompatibility of the specimens was analyzed by optical mi-
croscopy of the specimens extracted from the rabbits after 12
weeks of implantation. Microscopic investigation revealed that the
Co/Cr alloy implant was firmly adhered to the surface of the bone
and was partially covered by connective tissues. Connective tissue
sections with a high density of fibroblasts were observed in the
areas between the implant and compact jaw bone (Fig. S5a, b). At
other locations, the implant was in direct contact with the parent
bone. In these areas, the bone tissue exhibited signs of destructive
disorders such as absence of osteocytes, presence of demineral-
ization niduses, and chaotic arrangement of basophilic resting lines.
Also, small foci of cellular detritus were observed, as were compact
bone restructuring areas with small resorption cavities. These
cavities were filled with loose connective tissues. Narrow baso-
philic resting lines of bone remodeling foci and strata between the
bone tissues were also observed. The morphological parameters of
the mandible after implantation of the Co/Cr alloy plates are shown
in Table 1.

3.3.2. Ti alloy

The microscopic investigation of compact bone sites adjacent to
the Ti alloy implant revealed areas of newly formed, mature bone.
This bone was observed with connective tissues, a low density of
fibroblasts and bundles of collagen fibers (Fig. S6a, b). Isolated foci
of necrosis between the implant and the newly formed tissue were
observed. Evidence of restructuring processes was observed in the
compact bone of the jaw near the surface of the implant. These
processes required the formation of resorption cavities, which were
filled with friable connective tissue with a high density of capillary-
type blood vessels. The density of osteoblasts was increased in the
edge regions of trabecula of the cancellous bone. Intertrabecular
spaces were also filled with friable connective tissues.

3.3.3. CNC-Co/Cr alloy

The microscopic investigation showed that edge surfaces of the
implant were covered with connective tissues. Fields with rough
bone were primarily observed between the implant and the
compact body of the jaw bone. Only small areas containing con-
nective tissues with collagen fibers arranged parallel to the surface
of the implant were evident. Only single, mature fibroblasts were
observed (Fig. 5).

Resorption cavities were observed in compact bone areas
located under the implant. These cavities exhibited various shapes
and sizes and were filled with friable connective tissues or bone
marrow fat. Some signs of restructuring, which included the for-
mation of basophilic resting lines, were observed. These resting
lines separated the strata and the newly formed bone. These areas
contained a high density of osteoblasts (Table 1).
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Table 1
Gradation of severity of morphological parameters of the mandible body for rabbits in 12 weeks after implantation.
Indicator Gradation Implant type
Co/Cr alloy Titanium alloy DLC on Co/Cr
Severity
Newly formed tissue between parent compact bone and implant Connective tissue, % 89.67 + 0.88 76.33 +4.30 69.33 + 4.80
Coarse-fibered bone, % 10.33 + 0.88 23.67 + 4.40 31.66 + 1.76
Foci of necrosis at the tissue surface adjacent to the implant Absence - - +
Isolated foci + + -
1/3 of the contact surface - - -
The nature of the compact bone restructuring Osteocyte-free area 0.33 0.33 0.25
Resorption cavity, % 50.70 + 2.60 44.67 + 2.60 41.67 + 3.33
Demineralization foci Single Single Absent
Characteristics of trabecular bone reconstruction Density of Osteocytes 119.33 + 1.20 122.00 + 6.43 158.00 + 1.15
Expanded intertrabecular space, % 61.00 + 4.36 57.30 + 4.40 43.67 + 2.60

Fig. 5. Microscopy of carbon nanocomposite-coated implant (Im), fragment of the jaw
bone: A — Coarse-fibered bone tissue around the perimeter of the implant; B — Narrow
strips of connective tissue; C — Basophilic glue line; D — Generation of newly formed
bone. The specimen was painted with haematoxylin and eosin.

4. Discussion

The experimental results showed that CNC deposited on Co/Cr
alloy by using the Cgp ion beam deposition process could signifi-
cantly enhance the biocompatibility and durability of the implant.
In the case of durability, the coated specimen showed up to 100-
fold higher wear resistance than the bare Co/Cr alloy. This
remarkable result was achieved despite the fact that the Cgp ion
beam deposition process used in this work was significantly
simplified compared to the process reported previously [27,35]. The
deposition was performed without the use of a mass separator to
reduce the cost and time of the process. The durability of the CNC-
Co/Cr alloy was sufficiently high to be applied in biomedical
implant applications. Furthermore, the use of the ion beam
permitted the coating of structures with complex shapes.

The lifetime of the CNC-Co/Cr alloy implant in actual biological
environment may be predicted by using the Archard's wear model
[38]. The number of cycles to failure, Ng, could be estimated by the
following equation based on the Archard's law:

A-H

Ne =3 kF (1)

where A is the wear area, H is the hardness, k is the wear coefficient
and F is the applied normal load. The experimental wear coefficient
for the CNC-CoCr alloy was approximately 1 x 10~8. The wear area
could be estimated geometrically by assuming the diameter of the

pin and the maximum wear depth, which was considered to be
equal to the thickness of the coating. The normal load experienced
in an actual biological environment could be estimated by the
Hertzian contact theory [38] based on the maximum contact stress.
According to previous reports, the maximum contact stress expe-
rienced by dental implants in human is in the range of 50—160 MPa
[49,50]. Taking into account the material and diameter of the pin, it
was found that this contact stress corresponded to a normal load, F,
of about 0.1 mN. By substituting these values into eq. (1), it could be
found that the predicted number of cycles to failure exceeded 1
billion. Thus, it may be stated that the CNC coated CoCr implant has
sufficient mechanical durability for real application.

As for the corrosion resistance, the coated specimen exhibited a
higher electrode potential compared with those of the bare metal
alloy specimens. The high positive electrode potential indicated
that the material exhibited good resistance to electrochemical
degradation. This observation was in good agreement with the
previous work by Lee et al. [51] regarding the chemical stability of
carbon coatings deposited by a Cgp ion beam. It was shown that
these coatings exhibit excellent corrosion resistance in aggressive
anodic and cathodic environments.

In regard to biocompatibility, the coated specimen proved to be
superior compared to the metal alloy specimens. In all cases,
complex reparative and adaptive-compensatory mutations
occurred after implantation in compact and spongy bone. The
severity of these mutations depended on the type of implant ma-
terial. However, CNC deposited by the Cgg ion beam on the Co/Cr
alloy significantly improved the durability of implants and
increased their acclimation rate. Furthermore, the benefits of the
CNC with respect to formation of new tissues were demonstrated.
The density of coarse-fibered bone tissue between the implant and
the compact bone, as well as the number of osteocytes and the
reduced density of resorption lacunae were maximized. In contrast,
average characteristics were shown by the Ti implant and negative
results were found for the uncoated Co/Cr alloy implant.

5. Conclusions

The structural, mechanical and biological properties of carbon
nanocomposite coatings deposited by the Cgp ion beam on a Co/Cr
alloy were assessed. The properties of coated alloys were compared
with those of bare Ti and Co/Cr alloy. It was found that the nano-
composite coated Co/Cr alloy exhibited high wear resistance
accompanied by high biocompatibility when tested on rabbits. The
wear resistance of the coated alloy was 100—400 fold higher
compare to bare Co/Cr and Ti alloys. Besides superior durability, the
nanocomposite coating demonstrated better biological properties
with respect to formation of new tissues and absence of negative
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morphological parameters such as necrosis and demineralization.
On the basis of these results, it may be stated that deposition of
carbon nanocomposite coating on Co/Cr alloy by a Cgp ion beam is a
promising technology for orthopedic and dental applications.
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