115 research outputs found
Multielectron spectroscopy: Auger decays of the argon 2p hole
All the different Auger decay paths of Argon 2p holes have been characterized using a time of flight spectrometer of the magnetic bottle type. All electrons (the photoelectron and up to three Auger electrons) are detected in coincidence and resolved in energy. Double Auger decay is shown to proceed either through a direct process or by intense cascade paths, implying highly excited autoionizing Ar2+ states, which are identified as Ar2+ 3s−2 correlation satellites. Triple Auger decay is also observed and estimated to account for 0.2% only of all Auger decay
Dynamics of electron emission in double photoionization processes near the Krypton 3d threshold
Two electron emission following photoabsorption near the Kr 3d threshold is investigated both experimentally and theoretically. On the experimental side, electron/electron coincidences using a magnetic bottle time of flight spectrometer allow us to observe the complete Double Photo Ionisation (DPI) continua of selected Kr2+ final states, and to see how these continua are affected by resonant processes in the vicinity of the Kr 3d threshold. The analysis is based on a quantum mechanical approach that takes into account the contribution of three different processes: A) Auger decay of the inner 3d vacancy with the associated post collision interaction (PCI) effects, B) capture of slow photoelectrons into discrete states followed by valence multiplet decay (VMD) of the excited ionic states and C) valence shell DPI. The dominant process for each Kr2+(4p-2) final state is the photoionization of the inner shell followed by Auger decay of the 3d vacancies. Moreover, for the 4p2(3P) and 4p-2(1D) final ionic states an important contribution comes from the processes of slow photoelectron capture followed by VMD as well as from double ionization of the outer shell involving also VMD
4d-inner-shell ionization of Xe+ ions and subsequent Auger decay
We have studied Xe+4d inner-shell photoionization in a direct experiment on
Xe+ ions, merging an ion and a photon beam and detecting the ejected electrons
with a cylindrical mirror analyzer. The measured 4d photoelectron spectrum is
compared to the 4d core valence double ionization spectrum of the neutral Xe
atom, obtained with a magnetic bottle spectrometer. This multicoincidence
experiment gives access to the spectroscopy of the individual Xe2+4d−15p−1
states and to their respective Auger decays, which are found to present a
strong selectivity. The experimental results are interpreted with the help of
ab initio calculations.1\. Auflag
Разработка рекламной кампании промышленного предприятия и оценка ее эффективности (на примере ОАО «Коминтерн»)
Spectra of triply charged carbon disulphide have been obtained by measuring, in coincidence, all three electrons ejected in its formation by photoionization. Measurements of the CS23+ ion in coincidence with the three electrons identify the energy range where stable trications are formed. A sharp peak in this energy range is identified as the 2Π ground state at 53.1±0.1 eV, which is the lowest electronic state according to ab initio molecular orbital calculations. Triple ionization by the double Auger effect is provisionally divided, on the basis of the pattern of energy sharing between the two Auger electrons into contributions from direct and cascade Auger processes. The spectra from the direct double Auger effect via S 2p, S 2s, and C 1s hole states contain several resolved features and show selectivity based on the initial charge localization and on the identity of the initial state. Triple ionization spectra from single Auger decay of S 2p -based core-valence states CS22+ show retention of the valence holes in this Auger process. Related ion-electron coincidence measurements give the triple ionization yields and the breakdown patterns in triple photoionization at selected photon energies from 90 eV to above the inner shell edges
Intermanifold similarities in partial photoionization cross sections of helium
Using the eigenchannel R-matrix method we calculate partial photoionization
cross sections from the ground state of the helium atom for incident photon
energies up to the N=9 manifold. The wide energy range covered by our
calculations permits a thorough investigation of general patterns in the cross
sections which were first discussed by Menzel and co-workers [Phys. Rev. A {\bf
54}, 2080 (1996)]. The existence of these patterns can easily be understood in
terms of propensity rules for autoionization. As the photon energy is increased
the regular patterns are locally interrupted by perturber states until they
fade out indicating the progressive break-down of the propensity rules and the
underlying approximate quantum numbers. We demonstrate that the destructive
influence of isolated perturbers can be compensated with an energy-dependent
quantum defect.Comment: 10 pages, 10 figures, replacement with some typos correcte
- …